
Article https://doi.org/10.1038/s41467-023-44678-x

A uniform data processing pipeline enables
harmonized nanoparticle protein corona
analysis across proteomics core facilities

Hassan Gharibi 1,10, Ali Akbar Ashkarran2,10, Maryam Jafari3, Elizabeth Voke4,
Markita P. Landry 4,5,6,7, Amir Ata Saei 8,9 & Morteza Mahmoudi 2

Protein corona, a layer of biomolecules primarily comprising proteins, forms
dynamically on nanoparticles in biological fluids and is crucial for predicting
nanomedicine safety and efficacy. Theprotein compositionof the corona layer
is typically analyzed using liquid chromatography-mass spectrometry (LC-MS/
MS). Our recent study, involving identical samples analyzed by 17 proteomics
facilities, highlighted significant data variability, with only 1.8% of proteins
consistently identified across these centers. Here, we implement an aggre-
gated database search unifying parameters such as variable modifications,
enzyme specificity, number of allowed missed cleavages and a stringent 1%
false discovery rate at the protein and peptide levels. Such uniform search
dramatically harmonizes the proteomics data, increasing the reproducibility
and the percentage of consistency-identified unique proteins across distinct
cores. Specifically, out of the 717 quantified proteins, 253 (35.3%) are shared
among the top 5 facilities (and 16.2% among top 11 facilities). Furthermore, we
note that reduction and alkylation are important steps in protein corona
sample processing and as expected, omitting these steps reduces the number
of total quantified peptides by around 20%. These findings underscore the
need for standardized procedures in protein corona analysis, which is vital for
advancing clinical applications of nanoscale biotechnologies.

Once exposed to biological fluids, the surface of nanoparticles is
rapidly covered with a layer composed of ions and various types of
biomolecules called biomolecular/protein corona1. The composition
of the protein corona, in terms of the type, abundance, and decoration
of participating proteins, determines how biosystems (e.g., cells) per-
ceive nanoparticles and respond to them2. A recent meta-analysis of
2,134 published manuscripts in the field of protein corona revealed a

great heterogeneity in the proteomics analysis of nanoparticle corona
(e.g., in terms of the numbers of identified unique proteins)3; there-
fore, there is a great need for the development of standardized
approaches/protocols to improve the proteomics characterization of
nanoparticle protein corona across various labs/cores4.

Mass spectrometry-based proteomics generally produces repro-
ducible data5, and the main difference between similar experiments
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performed in different labs would be noted in the number of proteins
quantified in a given sample (i.e., proteome coverage). Therefore, in
cases with low proteome coverage, the lack of detection of a low-
abundant genuine target can impose a bias, and as such a less
important target candidate might be selected for follow-up analysis.
This issue is exemplified by the proteomics analysis of biological fluids
(e.g., plasma/serum), and by extension in the analysis of (plasma/
serum) protein corona, as the presence or absence of a protein in the
corona layer can lead todatamisinterpretationormissing abiomarker.
The analysis of protein corona suffers from similar challenges as in
plasmaproteomics, includingmainly the broad dynamic range6, i.e., 22
proteins comprise 99% of plasma proteins by weight7, with peptides
from such proteins crowding the mass spectra and preventing the in-
depth analysis of the proteome, especially for proteins with rather low
abundance8. Furthermore, another analytical difficulty is the presence
of different protein isoforms in plasma. In fact, emerging technologies
using nanoparticle protein corona have been developed for reducing
the biological complexity of a given biological fluid in biomarker
discovery9–11. Despite these challenges, scientists have quantified
thousands of proteins in plasma, leading to the discovery of distinct
disease-based biomarkers12–16.

While plasma proteomics is continuously improving, there are
limited attempts at standardization across different proteomics stu-
dies with regard to sample preparation, as well as data extraction,
cleaning, and processing17. However, considerations and recommen-
dations about study design, plasma sample collection, quality assur-
ance, sample preparation, MS data acquisition, data processing, and
bioinformatics together with minimum reporting requirements for
proteomics experiments have been discussed17,18.

Thequality andproteomecoverage of protein corona reportedby
a given core facility can be affected by the sample preparation pro-
tocols, analytical columns, liquid chromatography (LC) systems, and
mass spectrometry (MS) instruments, as well as the method para-
meters and duration of the analysis. Other sources of variation involve
the platform for database search of the raw files, search settings,
control of false-discovery rate (FDR), the inclusionof post-translational
modifications, and the sequence database used.

To investigate the extent and source of heterogeneity in protein
corona data obtained from various cores, we sent identical protein
corona samples to distinct liquid chromatography–mass spectrometry
(LC-MS/MS) core facilities and analyzed their reported results4. More
specifically, 17 identical aliquots of a protein corona sample were
analyzed by centers at Harvard University, Stanford University, Mas-
sachusetts Institute of Technology (MIT), Case Western Reserve Uni-
versity, Wayne University, University of Illinois, Cornell University,
University of Tennessee, University of Nebraska-Lincoln (UNL), Uni-
versity of Missouri, University of Cincinnati, University of Florida,
University of Kansas Medical Core (KUMC), University of Texas at San
Antonio (UTSA), Michigan State University (MSU), University of Cali-
fornia San Diego (UCSD) and University of Nevada, Reno (UNR). The
analysis was performed in 3 technical replicates. No standard operat-
ing procedures were provided or requested; rather the core facilities
were asked to analyze the samples according to usual practices.
Hereafter, we blind the core facility names with random numbers—the
same numbers as in the previous study4, to prevent any potential
conflict of interest. Essential details from the protocols can be found in
Supplementary Table 1. We had requested detailed protocols from all
centers, which can be found in the supplementary information of our
original study4.

In this study, we explore the influence of database search, data
extraction, processing, and analysis on observed data heterogeneity.
Specifically, we investigate whether employing an aggregated data-
base search with uniform parameters, including controlled FDR, can
help standardize and harmonize the results.

Results
We performed a uniform database search on the LC-MS/MS raw files
from 15 centers that used orbitrap detectors (the overall workflow is
shown in Fig. 1). Centers 6 was excluded from the search, as the sam-
ples were analyzed by a Bruker timsTOF-PRO instrument. Center 8 was
also excluded as acrylamide was used for the alkylation of cysteine
(Cys) residues, while the other centers used iodoacetamide (IAA) or
skipped the alkylation step. Since several centers had not specified if
the reduction and alkylation of proteins had been performed, we
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Fig. 1 | A uniform database search on nanoparticle protein corona raw data
provided by 15 core facilities.Nanoparticles were incubated with plasma to form
the protein corona. The samples were then divided into 17 identical aliquots and
submitted to 17 different core facilities across the USA, as described in ref. 4. In
this study, the raw files were individually examined. The protocols were also
carefully examined to identify the raw files that could be processed in a uniform

database search. Raw data from the 15 centers were then subjected to database
search using an up-to-date version of MaxQuant with an up-to-date fasta file. Data
was then extracted, cleaned, and analyzed, as described in detail below. The TEM
image of the corona-coated nanoparticle is reproducedherewith permission from
ref. 4. m/z mass-to-charge ratio, LC-MS liquid chromatography coupled to mass
spectrometry.
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included Cys carbamidomethylation as a variable modification and
used carbamidomethylated peptides in the quantification of proteins
as well. While some centers had included other modifications such as
deamidation and phosphorylation in their individual database sear-
ches, we included only the routine methionine oxidation and acetyla-
tion of protein N-termini as variable modifications, so that the results
would be comparable between the centers. A 1% FDRwas applied both
at the protein and peptide levels, similar to previous studies19. As
shown in Supplementary Table 1, different centers used 1-10% FDR at
the protein and/or peptide level, while some centers did not state the
FDR information. While previously some centers had used a semi-
specific search, here we only searched for specific tryptic peptides.We
also only allowed up to twomissed cleavages, which is rather standard
and well-accepted in the community. This is while previously several
centers had allowed up to 3–5 missed cleavages in their individual
search. It is noteworthy thatweareonlyhighlighting thesevariations in
parameters as a source of heterogeneity and are applying only para-
meters that are well-accepted in the community (e.g., nomore than 1%

FDR)20. This does not undermine the validity of the previous database
searches performed individually bydifferent core facilities. The overall
workflow is shown in Fig. 1.

A uniform database search dramatically enhances data homo-
geneity across distinct centers
The uniform database search identified 1,335 proteins after removing
contaminants (Supplementary Data 1). This is while the compilation of
individually searched datasets from different core facilities had led to
the identification of 4022 proteins, cumulatively4. We believe that the
significantly higher number of identifiedproteins in the previous study
was partially due to a lack of applying stringent FDR at the protein and
peptide levels, as well as using different search engines, sequence
databases, and other search parameters such as variable post-
translational modifications, enzyme specificity and the number of
allowed missed cleavages.

The number of proteins quantified by each core facility is shown
in Fig. 2a and compared with the detected proteins in the previous
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shared proteins across different core facilities. c The determining role of protein
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analyses were based on averaging three technical replicates.
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study. As expected, the number of proteins for all the centers
decreased as a result of the uniform search. Applying a less stringent
FDR, semi-specific database search, inclusion of peptides with more
than twomissed cleavages, and inclusion of non-routinemodifications
such as phosphorylation are expected to yield a higher number of
proteins, in comparison with our uniform search. As a result, com-
pared to the number of detected proteins in individual database
searches, in the uniform search, there were more dramatic reductions
in the number of quantified proteins for centers that performed the
database search using the four above parameters.

Overall, 717 proteins were quantified, 51 (7.1%) of which were
shared among all centers (Supplementary Data 2), and 31 (4.3%) were
found in all replicates (proteins with NA_count_all_replicates of zero in
Supplementary Data 2) (Fig. 2b). In the previous study, only 1.8% of the
proteome was shared among 12 core facilities4. As expected, the
majority of the proteins shared among all centers had a relatively
higher abundance, a higher number of detected peptides, and a higher
sequence coverage (Fig. 2c; e.g., red and yellow circles show the pro-
teins quantified by 100% and 80% of core facilities). The distribution of
the protein-level intensities for the 15 cores is shown in Fig. 2d.We also
mapped the 51 shared proteins across all core facilities to the KEGG
pathways and the enriched pathways are illustrated in Fig. 3.

A hierarchical clustering of the 717 proteins quantified cumula-
tively by 15 core facilities in the nanoparticle protein corona is shown in
Fig. 4a. The PCA analysis in Fig. 4b also shows that the principal com-
ponent 1 separates the data by the number of quantified proteins by
each core facility. Overall, the cores are mainly separated based on the
number of quantified proteins into 3 clusters A, B, and C. We then
calculated the number of shared proteins for each cluster.While cluster
A core facilities shared 253 proteins, clusters B and C each shared 122
and57proteins, respectively (Fig. 4c). Therefore,while 35.3%ofproteins
were shared among the 5 core facilities in cluster A, the corresponding
number for the 6 core facilities in cluster B was 17% and for the 4 core
facilities in clusterCwas 7.9%. Toperforma less biased comparisonwith
the previous study4, we calculated the shared proteins for centers in
clusters A and B (11 centers in total). Cluster A and B shared 116 proteins
(16.2% of all proteins). This is a 9-fold improvement compared to the
1.8% shared proteins among 12 centers in our original study4.

The distribution of protein-level intensities for the shared pro-
teins among the core facilities in each cluster is shown in Fig. 4d,
demonstrating that the core facilities in cluster C have mainly quanti-
fied the most abundant proteins in the samples (the average protein
intensities for the shared proteins in cluster C is higher than B and in
turn, that of B is higher than cluster A). These results show that certain
core facilities outperformothers in quantifying low-abundant proteins
and reaching a higher proteome coverage. In comparison with our
previous study, these findings indicate that a uniform database search
dramatically enhances the number of shared proteins among different
core facilities and makes it possible to compare the performance of
each center in an unbiased manner. Hypothetically, the shared pro-
teins would also increase if other uniform search parameters were
applied.

To further examine the other factors thatmight be responsible for
the observed clustering in Fig. 4a, we investigated the number of times
a parameter was used by the cores in each cluster. As shown in Fig. 4e,
there was a trend in clustering with respect to the MS system used,
digestion mode, and the inclusion of reduction and alkylation steps.
Overall, high-end (more recently launched) mass spectrometers
excelled in providing the highest proteome coverage, while there were
some exceptions. Expectedly, due to lower sample loss, on-bead
digestion (though not in all cases) overall provided a higher proteome
coverage than in-solution or in-gel digestion, and this might explain
why more core facilities opted for on-bead digestion based on their
experience. We also investigated the impact of other parameters
including gradient duration, variable modifications, LC system, and
FDR on the clustering in Fig. 4a. However, none of these parameters
had a visible impact on the clustering.

Cys residues constitute 2.3% of the amino acids in the proteome
and thus, ≈20% of all tryptic peptides contain at least one Cys21. In the
absence of reduction and alkylation, such peptides crosslink during or
after digestion and are mostly either eliminated during the cleaning
process and/or are not found through a routine database search. As
such, thesepeptides cannot be identified/quantifiedby routine LC-MS/
MS analysis. Since 6 core facilities had not indicated Cys reduction and
alkylation in the provided protocol (centers 1, 2, 4, 5, 13, and 17), we
also calculated the number of quantified Cys-containing peptides for

11 of 82 

5 of 48 

2 of 24 

7 of 86 

5 of 73 

7 of 122 

5 of 94 

7 of 141 

4 of 88 

4 of 88 

4 of 94 

3 of 75 

3 of 77 

7 of 195 

6 of 194 

3 of 97 

4 of 157 

5 of 201 

5 of 209 

4 of 187 

5 of 349 

False discovery rate Strength 
−10 −5 0 0.0 0.5 1.0 1.5

Vitamin digestion and absorption 

Chagas disease 

PPAR signaling pathway 

Arrhythmogenic right ventricular cardiomyopathy 

Pathogenic Escherichia coli infection 

PI3K−Akt signaling pathway 

Tight junction 

ECM−receptor interaction 

Hypertrophic cardiomyopathy 

Dilated cardiomyopathy 

Regulation of actin cytoskeleton 

Rap1 signaling pathway 

Proteoglycans in cancer 

Systemic lupus erythematosus 

Pertussis 

Cholesterol metabolism 

Focal adhesion 

Phagosome 

Platelet activation 

Staphylococcus aureus infection 

Complement and coagulation cascades 

Pa
th

w
ay

s

Fig. 3 | The enriched KEGG pathways for the 51 proteins quantified by all 15 core facilities. The number of proteins enriched is also given.

Article https://doi.org/10.1038/s41467-023-44678-x

Nature Communications |          (2024) 15:342 4



122

57

253

0

50

100

150

200

250

A B C
Cluster group

N
o.

 o
f s

ha
re

d 
pr

ot
ei

n s
 in

 c
en

te
r c

lu
st

er
s

l

l

l

l

l

lll
l

l

l

l

l

l

l

l
l

l

l

l
ll

ll
ll

ll

l
l

l

l

ll

l

l
l
l

l

l

l

l

l l

−5

−4

−3

−2

−1

A B C
Cluster group

Lo
g1

0(
no

rm
al

iz
ed

 p
ro

te
in

 a
bu

nd
an

ce
) Center

C
om

po
ne

nt
 2

 (1
1.

24
%

)

−100 −50 0 50 100

−50

0

50

100

●

●

●

●

● ●

●

●●●

●

●

●
●

●

1

10

11

12

13
14

15

16

172

3

4

5 7
9

10
9

8
7

6
7

4
3

2
1

2 1 4 15 5 11 7 10 3 12 9 13 14 16 17

Lo
g1

0(
no

rm
al

iz
ed

 a
bu

nd
an

ce
) 

−15

−10

−5

0

Component 1 (34.96%)

Cluster A Cluster B Cluster C

a b c

d

1
2
3
4
5
7
9
10
11
12
13
14
15
16
17

f

29

669

682

625

60

210

1037
207

510

579

26 15

592
399

0

10

20

1 2 3 4 5 7 9 10 11 12 13 14 15 16 17
Center

Pe
pt

id
es

 c
on

ta
in

in
g 

C
ys

 (%
)

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

1

10 11
12

13

14

15

16
17

2

3

4

5

7

9
500

1000

1500

2000 4000

Pe
pt

id
es

 c
on

ta
in

in
g 

H
is

1

10 11

12

13

14

15

16
17 2

3

4 5

7

9

0

250

500

750

1000

2000 4000

Pe
pt

id
es

 c
on

ta
in

in
g 

C
ys

6000 6000
Total peptide count Total peptide count

g h

0

1

2

A B C
Cluster

C
ou

nt

MS system
Eclipse
Elite
Fusion
Fusion Lumos
Q Exactive
Q Exactive HF
Velos Elite

0

1

2

3

4

5

A B C

Digestion mode
In−gel digestion
In−solution digestion
On−bead digestion

0

2

4

6

A B C

No
Yes

Reducation 
and alkylation

Cluster Cluster

e

Fig. 4 | A uniformdatabase search enables comparison of nanoparticle protein
corona proteomics data across 15 core facilities. a Hierarchical clustering of
normalized intensities of 717 proteins quantified in the identical nanoparticle
protein coronas across 15 core facilities. b PCA analysis of the proteomes quanti-
fied by 15 core facilities. c The number of shared proteins in different clusters
identified in hierarchical clustering and PCA analysis of the dataset. The red, blue
and green colors in panels a–c refer to the clusters of centers.d The distribution of
protein intensities in the different clusters. Boxplot: center line, median; box limits
contain 50%; upper and lower quartiles, 75 and 25%; maximum, greatest value

excluding outliers; minimum, least value excluding outliers; outliers, more than 1.5
times of upper and lower quartiles. e The effect of different parameters on the
clustering observed in panel a. f The percentage of peptides with at least one Cys
residue in data obtained from each core facility (numbers on the top of each bar
show the actual number of Cys-containing peptides). g The number of peptides
containing Cys vs. total peptide count. h The number of peptides containing His
residues vs. total peptide count. All analyses were based on averaging three
technical replicates.

Article https://doi.org/10.1038/s41467-023-44678-x

Nature Communications |          (2024) 15:342 5



different centers. As shown in Fig. 4f, centers that have included a
reduction and alkylation step in their protocols quantified around the
expected ~20% Cys-containing peptides. On the other hand, the above
6 centers failed to quantify such peptides. A good correlation is
expected between the number of Cys-containing peptides and total
peptide count. Such correlation is observed for the centers that per-
formed reduction and alkylation of Cys residues, but not for the 6
centers that skipped this step (Fig. 4g). As a control, we have plotted
the number of histidine (His)-containing peptides vs. total peptide
count, demonstrating the near-perfect correlation (Fig. 4h). We chose
His, as the frequency of His in the proteome is very close to Cys
residues21. Interestingly, 4 centers that skipped the reduction and
alkylation steps, belong to cluster A in Fig. 4a, which quantified the
highest number of proteins. However, even in these cases, data quality
(peptide number per protein and sequence coverage), as well as the
proteome coverage could be further enhanced by the inclusion of Cys-
containing peptides. Collectively, this finding shows the necessity of
including Cys reduction and alkylation steps in the LC-MS/MS work-
flow in the prevention of data loss.

Global similarity of proteomics data across different centers
We then calculated the correlations among the 51 proteins shared by
the 15 centers (Fig. 5). This unbiased analysis shows that for the
consistently quantified proteins, all cores reported highly compar-
able data. The data from most core facilities generally show a cor-
relation coefficient higher than 0.7 with those of other facilities. Only

data from core 11 generally show correlations below 0.7 with those of
other facilities, that we could not attribute to a single parameter such
as digestion time, instrument type, database search, etc. The accep-
table correlation levels indicate that the data from each core can be
validatedwithin the given proteome coverage and that the variability
in data mainly originates from the varying proteome coverage. While
the variability can also arise from the LC-MS/MS protocols and
workflows, here we show that performing a uniform and standard
database search and stringent control of FDR at the protein and
peptide levels can dramatically harmonize data across different core
facilities.

Discussion
The results of this study demonstrate that using a uniform and more
standard database search can help to homogenize the results of pro-
tein corona analysis across different core facilities. The reduction of
detected proteins from 4,022 to 1,335 (quantified) proteins across the
cores shows that database search parameter settings have a dramatic
effect on the search results. The uniform data processing and analysis
increases the number of shared proteins among different centers and
increases data reproducibility by unifying the sequence database,
search parameters, and data cleaning. We also show that while the
abundances of shared proteins generally correlate well among differ-
ent centers, the predominant source of variability originates from
various degrees of proteome coverage. In this case, the proteome
coverage largely depends on the LC-MS/MSprotocol, workflow, the LC
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and MS instrument, data extraction, and processing. We further
demonstrate that reduction and alkylation are essential steps in sam-
ple preparation, and skipping this step can lead to 20% data loss at the
peptide level. The lack of detection of Cys-containing peptides can
compromise the quality of protein corona analysis in terms of protein
sequence coverage and peptide per protein. We further confirm that
centers that provide a lower proteome coverage have mainly quanti-
fied the more abundant proteins in the corona layers. Proteome cov-
erage is of substantial importance in protein corona research, as the
presence and absence of every protein may ultimately influence bio-
marker selection.

The analyses show that multiple variables in LC-MS/MS protocol,
workflow, the LC and MS instrument, data extraction, and processing
can account for the outperformance of given centers over others. The
MS instrument, digestion mode, and inclusion of reduction and alky-
lation steps were among the variables that had an effect on the pro-
teome coverage in the current study. However, at times, even several
centers skipping Cys reduction and alkylation steps outperformed
otherswho hadcarried out those steps. The proteome coverage seems
to be largely dependent on the workflow, the scientist, and overall, the
center performing the experiment. This underscores the importance
of good practice in LC-MS/MS sample preparation and underlines the
importance of users’ expertize as another influential parameter, as
stressed before22.

There are several studies focusing on the technical and instru-
mental aspects that can introduce heterogeneity in the data retrieved
from different centers, including other high-throughput technologies
such as RNA sequencing and microarrays22–29 (though not on nano-
particle protein corona). Other studies have investigated the effects of
preanalytical sample processing and storage on plasma
proteomics30–37. We have already discussed several studies in our
previous report4.

There are certain parameters in database search that can mod-
erately or significantly impact the data output. We believe that the
choice of the search engine (software), the sequence database used,
the inclusion of several variablemodifications, and assigning a specific
or semi-specific search can moderately affect the data output, while
the FDR rate would probably have the largest impact. While different
search engines might yield slightly different outputs, once they have
been tested, they are routinely updated, and their outputs can be
trusted. The inclusion of additional modifications or performing a
semi-specific searchwould increase the number of quantified peptides
(and as such, the number of proteins), but at the expense of the higher
rate of false positive discoveries. The selection of a higher FDR cutoff
would generally lead to the identification of a larger number of pro-
teins, but in parallel, the number of false positive hits also increases. A
higher FDR at the peptide level would allow for a large number of
falsely identified peptides, which could later compromise the protein-
level inferencewhich is based on peptide-level identifications38. A high
FDR is especially detrimental for low-abundant proteins that are
detected by a few peptides. Therefore, here we will mainly discuss the
importance of FDR control.

Some studies have investigated the impact of FDR control in
proteomics analysis across different centers. For example, Collins et
al.5 performed a comparative reproducibility analysis of Sequential
Window Acquisition of all theoretical fragment ion spectra (SWATH)
MS data acquisition among 11 sites worldwide. A set of standard pep-
tides with serial dilutions were spiked into HEK293 cell lysate. While
SCIEX TripleTOF 5600/5600+ mass spectrometers were used on all
sites, the nano-LC systems were of various models but from the same
vendor SCIEX. The study detected a core set of 4,077 proteins that
were consistently detected in >80% of the samples. Similar to the
outcomes in our study, when the data analysis and FDR control were
carried out independently on a site-by-site basis, a reduction of con-
sistently detected proteins was noted among the sites. However, it

should be noted that no sample preparation was performed and thus
the variations in the workflows remained minimal. The above example
shows that by centralizing sample preparation and data analysis, as
well as minimizing variations in the instrumental parameters, it is
possible to achieve reproducibility for the majority of proteins in a
complex sample.

In comparison with the above study, here the identical protein
corona samples were shipped to different centers, where subsequent
sample preparation and LC-MS/MS analysis were performed at the
discretion of the center and no standardized instrumentation para-
meters or protocols were requested/provided. Therefore, the only
aggregated steps in the current study are the preparation of the pro-
tein sample, data extraction, processing, and analysis. Furthermore,
the centers in our study had to perform data-dependent acquisition
(DDA). Unlike SWATH, DDA acquisition involves stochastic fragment
ion (MS2) sampling39 and the repeatability of peptide sampling is
therefore lower39,40; i.e., when the number of precursor ions exceeds
that of precursor selection cycle, precursor selection becomes
stochastic41.

The Human Proteome Organization (HuPO) test sample working
group distributed an equimolar mixture of 20 highly purified recom-
binant proteins to 27 different labs, which in turn analyzed the samples
according to their own routines and protocols without any
constraints40. Of the 27 labs, only 7 labs correctly reported all 20
proteins. A centralized analysis of the raw data showed that all 20
proteins hadbeen detected in all 27 labs.Missed identifications or false
negatives, environmental contamination, problems in database
matching, and curation of protein identifications were found as sour-
ces of heterogeneity. The study showed that the main variabilities
observed in peptide identification and protein assignment were
caused by differences in data processing and analysis, rather than data
collection.

Here, we demonstrate that by applying a stringent FDR cutoff at
the protein andpeptide level and unifying the other searchparameters
such as enzyme specificity, variable post-translational modifications,
and consideration of peptides with missed cleavages, the percentage
of consistently quantified proteins is increased by a factor of 9, com-
pared to when individual database searches are performed on each
site. In comparison with our previous study where an independent
database search was performed by different core facilities leading to
the identification of 4022 proteins, here we identified 1429 proteins
and quantified only 717 proteins.

We believe that the challenging nature of plasma proteomics in
general, is one of the main reasons for lower rates of consistently
detected proteins in the corona layers, compared to other types of
proteomics analysis (e.g., cells and tissues). Similarly, in a previous
investigation, the authors reanalyzed data from 178 experiments from
2005–2017, showing that only 50% of the studies reported the 500
most abundant plasma proteins12.

In summary,we revealed that theuseof a uniformdatabase search
provides an opportunity for taking measures in best practices and
quality control in protein corona research using LC-MS/MS. This
approach paves the way to harmonize data analysis of protein corona
outcomes, enabling stakeholders to perform meta-analyses of pro-
teomics data in the existing literature. It seeks to minimize conflicts
and discrepancies that have arisen due to differences in sample pre-
paration and workflow across labs3. Enhancing reproducibility and
proteome coverage in protein corona research can accelerate the
successful clinical translations of nanomedicine technologies both in
diagnosis and therapeutic applications.

Methods
LC-MS/MS sample preparation
Details of sample preparation and LC-MS/MS analysis can be found in
the Supplementary Information.
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LC-MS/MS data processing and analysis
The rawLC-MS/MS data were analyzed byMaxQuant42, version 2.2.0.0.
The Andromeda search engine43 matched MS/MS data against the
UniProt complete proteome database (human, 20,401 entries without
isoforms, downloaded on December 11th, 2022). Since some centers
had not specified if alkylation of Cys residues had been performed, we
included Cys carbamidomethylation as a variable modification (and
used for protein quantification), along with methionine oxidation and
acetylation of protein N-termini. Trypsin/P was selected as enzyme
specificity. Nomore than twomissed cleavageswere allowed. A 1% FDR
was used as a filter at both protein and peptide levels. The first search
tolerancewas20ppm (default) andmain search tolerancewas 4.5 ppm
(default), and the minimum peptide length was 7 residues. Due to the
different lengths of LC gradients across different core facilities, the
match-between-run optionwas not activated. For all other parameters,
the default MaxQuant settings were used.

Data analysis
First, for each core, data were normalized by total protein intensity in
each technical replicate. Data analysis was performed using R project
version 4.1.0.

Statistics and reproducibility
All centers performed a triplicate analysis of a given aliquot.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data are from our previous study4. Due to the blinding of core
names in the current study, and since the MS .raw files can be traced,
the .raw data and associated individual data files are available upon
request from corresponding authors (A.A.S. andM.M.). The processed
datasets are provided as Supplementary Data files.
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