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ABSTRACT: The emergence of new tools to image neurotransmitters, neuromodulators, and neuropeptides has transformed our
understanding of the role of neurochemistry in brain development and cognition, yet analysis of this new dimension of
neurobiological information remains challenging. Here, we image dopamine modulation in striatal brain tissue slices with near-
infrared catecholamine nanosensors (nIRCat) and implement machine learning to determine which features of dopamine
modulation are unique to changes in stimulation strength, and to different neuroanatomical regions. We trained a support vector
machine and a random forest classifier to decide whether the recordings were made from the dorsolateral striatum (DLS) versus the
dorsomedial striatum (DMS) and find that machine learning is able to accurately distinguish dopamine release that occurs in DLS
from that occurring in DMS in a manner unachievable with canonical statistical analysis. Furthermore, our analysis determines that
dopamine modulatory signals including the number of unique dopamine release sites and peak dopamine released per stimulation
event are most predictive of neuroanatomy. This is in light of integrated neuromodulator amount being the conventional metric used
to monitor neuromodulation in animal studies. Lastly, our study finds that machine learning discrimination of different stimulation
strengths or neuroanatomical regions is only possible in adult animals, suggesting a high degree of variability in dopamine
modulatory kinetics during animal development. Our study highlights that machine learning could become a broadly utilized tool to
differentiate between neuroanatomical regions or between neurotypical and disease states, with features not detectable by
conventional statistical analysis.
KEYWORDS: dopamine, machine learning, nanosensors, striatum

■ INTRODUCTION
Recent advances in the ability to image neuromodulators from
single neurons,1 in acute brain slices2 and in vivo,3,4 have
enabled insights into the role of neurochemical communication
in the neurotypical and diseased brain. The newly accessible
neurochemical signals could greatly advance neuroimaging by
providing an additional dimension of information regarding the
role of neuromodulation in regulating brain circuits and the
central role of neuromodulators in psychiatric and neuro-
degenerative disease. Specifically, several dopamine probes have
been developed in the past few years that have achieved imaging
of dopamine at spatiotemporal scales commensurate with
endogenous neurochemical signaling. A class of genetically
encoded probes have enabled cell-specific expression of protein-

based reporters that fluoresce when dopamine is bound.3,4

Additionally, synthetic dopamine nanosensors have recently
been developed based on the adsorption of (GT)6 single-
stranded DNA oligonucleotides on the surface of single-walled
carbon nanotubes (SWNT), to generate a (GT)6-SWNT
nanosensor that is responsive to dopamine with fluorescence
modulation exceeding 2500%.24 These synthetic nanosensors
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have recently been used to image dopamine modulation in acute
brain slices,2 to elucidate dopamine modulatory deficits in
Huntington’s Disease9 and have achieved single dopamine
release site resolution to directly image somatodendritic
dopamine signaling in primary neurons1 and dopamine release
at axonal varicosities.25 As these neuroimaging tools are
implemented more broadly, it becomes imperative to interpret
the biological underpinnings of the signals and understand the
features of importance of this previously ‘invisible’ dimension of
neurobiology. Recent studies,20−23 have used machine learning
to analyze dopamine electrochemical traces, enabling differ-
entiation between catecholamines with similar redox potentials
and dopamine enantiomers that raw analysis of traces would not
enable. However, to our knowledge, dopamine imaging datasets
with high-dimensional dopamine probes have yet to be
achieved. Herein, we implement several machine learning
approaches to identify and evaluate what features extracted
from dopamine imaging studies distinguish neurobiological
features of importance, and which machine learning approaches
enable the analyses.
Male B6CBA-Tg(HDexon1)62Gpb/3J mice (R6/2 mice)

were purchased from Jackson Labs and bred at 6 weeks with 10-
week-old female C57BL/6 mice. Near-infrared catecholamine
nanosensors (nIRCat) have enabled imaging of neuromodulator
dopamine in brain tissue2 and to study the role of its modulation
in neurodegeneration.9 nIRCat is a versatile synthetic optical
tool for monitoring dopamine release and reuptake in acute
slices and is compatible with a broad range of pharmacological
agents used to target dopamine receptor activity. nIRCat
provides high spatial (micron) and temporal (second)
resolution videos of dopamine modulation in the brain
extracellular space, with many features contributing to the
signatures of dopamine release and reuptake through its volume
transmission in the extracellular space. This enables time-
resolved imaging of dopamine modulation at the level of
individual synapses. In this study, we use nIRCat to image
electrically-stimulated dopamine release within the dorsal
striatum of acute brain slices generated from 4-, 8.5-, and 12-
week-old, wildtype mice. It is important to note that the 4-week-
old mice represent prepubescent young animals, while the 12-
week-old mice have reached adulthood. Striatal tissue provides
an ideal environment for measuring dopamine with nIRCats
since this brain region is rich in dopaminergic projections from
the substantia nigra and relatively little norepinephrine, i.e.,
there is a faction of norepinephrine in the striatum in
comparison to the amount in the cortex.26 Moreover, we assess
whether machine learning can be implemented to identify if
dopaminemodulatory signals can distinguish striatal subregions,
and which features of neurotransmitter modulation are most
predictive to identify different brain regions. Specifically, we
apply two conventional yet distinct machine learning techniques
to analyze stimulated dopamine release imaged with nIRCat in
the dorsolateral striatum (DLS) and the dorsomedial striatum
(DMS). Stimulated dopamine release is achieved with a single
pulse at either 0.1 or 0.3 mA stimulation strength. The two
machine learning approaches we implemented are a support
vector machine (SVM) and, separately, a random forest (RF)
approach. We selected a SVM because of its capability to
distinguish observations into separate classes based on the
features that may share complex, nonlinear relationships with
the different classes to which the observations belong. The SVM
notion is based on finding a boundary in a space that separates
the training data into distinct classes and then applying that same

boundary or rule to the test data. We selected the RF approach
because it is a relatively simple method that will allow
interpretation of which variables from our dopamine imaging
datasets enable the most accurate predictions. RF is an ensemble
method, where multiple decision trees are formed on the same
dataset. The individual decisions made from each decision tree
are then combined to arrive at a consensus on the outcome that
is output as the classification. The classification decision is
output after the decision criteria for each split at a node of a tree
are determined based on the training data in supervised fashion.
The intricacy of RF that distinguishes it from its decision tree
relatives is that RF decorrelates the decision trees by considering
only a subset of features at each split in a constituent tree. This
approach prevents the possibility of one or a small portion of the
features dominating the decisions.
In our experimental workflow, we stimulated nIRCat-labeled

acute striatal slices with a single 0.1 or 0.3 mA pulse and imaged
dopamine release in the DLS and DMS striatal regions of mouse
brain tissue. Our hypothesis is that any differences in dopamine
release in DLS versus DMS could be elucidated from our nIRCat
data features, and that machine learning approaches can unearth
whether dopamine imaging is alone sufficient to distinguish the
DLS from DMS. Recent study has shown differences in
signaling, specifically differences in peak dopamine concen-
tration between dorsal and ventral subregions of the striatum in
mice. In ref 7, Calipari et al. found that DLS produces a roughly
4× higher concentration of stimulated dopamine release than
the Nucleus Accumbens core when measured in acute brain
slices with fast-scan cyclic voltammetry.7 However, somewhat
contradictory results have been reported using R6/2 mice, in
which no significant differences in maximum dopamine release
were observed across striatal subregions.8 Known differences in
dopamine transporter levels across the dorsal striatum indicate
that peak concentration may not fully capture signaling
disparities in the basal ganglia, and that regional differences in
autoreceptor expression, differences in axonal architectures, or
differences in projection density may contribute to signaling
kinetics.12−14 We, therefore, sought to study which dopamine
signaling features contribute to regional differences in
modulatory kinetics and assess whether machine learning
approaches may provide a user-removed means for identifying
subtle changes between brain regions in a manner that considers
more than absolute dopamine release concentrations. We
further hypothesize that machine learning can identify which
features of dopamine modulation enable this differentiation. We
anticipate that the identification of features of stimulated
dopamine release to be important for differentiating neuro-
anatomy and that the role of machine learning for this goal will
provide important insights for the interpretation of neuro-
modulator imaging experiments.

■ RESULTS AND DISCUSSION
Collected Data. Male B6CBA-Tg(HDexon1)62Gpb/3J

mice (R6/2 mice) were purchased from Jackson Labs, which
we bred at 6 weeks with 10-week-old female C57BL/6 mice.
Mice were kept in temperature-controlled environments with
three to five mice per cage on a 12 h light/dark cycle, with all
animal procedures approved by the University of California,
Berkeley Animal Care and Use Committee (ACUC). We
synthesized our dopamine nIRCat nanosensor and used nIRCat
to label acute live brain slices, as described previously in ref 10.
Acute brain slices were then labeled with nIRCat through
passive incubation in 5 mL of ACSF containing nIRCat
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nanosensor at a concentration of 2 mg/L for 15 min, rinsed, and
placed in a recording chamber to equilibrate during which a
tungsten bipolar stimulation electrode was positioned in the
striatal region of interest. We applied a single electrical
stimulation pulse of 0.1 or 0.3 mA after collecting 200 frames
of baseline nIRCat fluorescence from two brain regions: DLS
and DMS. To reduce bias, all stimulation videos were collected
in triplicate and we alternated stimulation strengths. Next,
nIRCat-labeled brain tissue slices were processed to quantify
their response to stimulated dopamine release. Raw image stack
files were processed using a custom-built, publicly available
MATLAB program with the image processing protocol
described in depth elsewhere.10 These processed data form
the inputs of our machine learning algorithms, summarized in
Table 1, and are calculated as follows: regions of dopamine

release in acute slice tissue are identified by large changes in
nIRCat ΔF/F response. Dopamine hotspots were programmati-
cally identified by creating a grid of 2 μm squares across the field
of view to reduce bias and expedite image stack processing time.
The relationship (F − F0)/F0 was used to calculate the change in
fluorescence, ΔF/F, of each grid square. Herein, F0 represents
the average fluorescence of the grid square over the first 30
frames of the image stack and F is the fluorescence intensity of
the grid square as it changes over the 600 collected frames. The
program identifies dopamine hotspots as regions of interest
(ROI) with statistically significant dopamine release activity if
these grid squares exhibit nIRCat fluorescence behavior that is at
least 3 standard deviations above the baseline fluorescence
activity, F0, at the time of slice stimulation (200 frames). In this
manner, we identified dopamine release hotspots for each
stimulation image stack for nIRCat-labeled brain slices. The
peak fluorescence,ΔF/F, of each dopamine hotspot in the image
stack was averaged to generate the average image stack peakΔF/
F. The number of active dopamine release sites per stimulation
event per brain slice were then identified and averaged to output
the average slice hotspot number. Mean values for dopamine
release and reuptake curves were calculated from averaging
traces from each slice, including three stimulations per slice and
1 slice per mouse. These outputs were subsequently used to

assess the feasibility of machine learning to distinguish
differences in features, such as peak ΔF/F or dopamine hotspot
number, across stimulation strengths and across brain regions.
Table 2 lists the experimental conditions and number of

independent stimulations used for each experimental condition,
and Table 1 lists the collected and analyzed data from nIRCat-
labeled brain slices subjected to single-pulse stimulation for
dopamine release. It is worth noting that while our analysis is
based on temporal traces generated from stimulated tissue
videos, the traces represent dopamine released from individual
release sites measuring on average ∼2 μM in size, thus
preserving the spatial advantage of dopamine imaging over
electrochemical measurements.
Computed Features. Acute coronal brain slices were

generated to contain the dorsal striatum and labeled with
nIRCat nanosensor (Figure 1A), as described previously,2 to
image stimulated dopamine release, as described above and
schematically depicted in Figure 1B,C. Time series traces were
used to generate the data features listed in Table 1, and prior to
this study it was unknown which of these features would be most
informative for distinguishing DLS from DMS or for analysis of
neurochemical modulation data as a whole (Figure 1D). Table 1
summarizes the features that were analyzed from each brain slice
labeled with nIRCat and following electrical stimulation. This
contrasts with the usual practice of considering the mean
dopamine value as a function of time for dopamine imaging in
neurobiological datasets. We also provide a representative
intensity trace annotated to highlight the features used in the
present study (Figure 1D). The number of active putative
dopamine release sites, termed ROIs, are programmatically
identified, as described previously2 and represent dopamine
release sites. Each individual ROI, in turn, includes a series of
features associated with dopamine release and reuptake from a
single dopamine release site, which includesmaximum change in
fluorescence (max dF), area under the dopamine response curve
(AUC), and dopamine signal decay (τ). Max dF is proportional
to the maximum concentration of dopamine measured by
nIRCat at that release site. AUC represents the integrated area
under the ROI fluorescence curve following stimulated release
and is a relative measurement of the total amount of dopamine
released by a site. Signal decay represents the reuptake kinetics
of dopamine, a signal that is dependent on the expression and
activity of dopamine transporters in brain tissue within the ROI.
Each of these features are computed over the duration of each
recording to attain the mean, variance, median, minimum, and
maximum values. The last two features in Table 1 reflect the
number of “deviations” for a recording, termed paroxysmal
features. Specifically, the signal from each stimulated brain slice
was Z-scored and a deviation-high was declared when the
recording exceeded a value of 2 standard deviations from the

Table 1. Features Computed from Traces To Be Used in the
Machine Learning Analysisa

aFeatures were calculated for each recording and used as the inputs to
the algorithms. The first 8 features (red) are deemed as statistical
features whereas the last 2 features (blue) are referred to as
paroxysmal features. In several of the ML analyses, all 10 features were
simultaneously used. In most dopamine imaging literature only one
value, the mean dopamine signal as a function of time, is considered
for analysis.

Table 2. Distribution of Brain Regions and Stimulation
Strengths That Were Recorded in Mouse Brain Slices

time
point animals slices

stimulation
strength (mA)

DLS (N
stimulations)

DMS (N
stimulations)

4 weeks 7 16 0.1 27 16
0.3 25 16

8.5
weeks

9 20 0.1 32 22
0.3 18 18

12
weeks

5 13 0.1 22 18
0.3 22 15
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mean, similarly a deviation-low was declared when the recording
fell 2 standard deviations below the mean. The number of low
and high deviations in a recording are referred to as ND-low
(ND: number of deviations) and ND-high, respectively. In
training machine learning algorithms and making ensuing
predictions, we consider the combination of all 10 features
from Table 1, as the combined feature set.
Machine Learning Algorithm Development. The SVM

and RF algorithms were trained on the features in Table 1, first
to assess whether these algorithms could differentiate between
dopamine released from nIRCat-labeled slices stimulated at
either 0.1 or 0.3 mA stimulation strengths. Prior literature using
nIRCat-labeled brain slices shows that different stimulation
strengths generate proportionately different levels of dopamine
release, with higher stimulation amplitudes generating a higher
max dF/F and AUC.2 Therefore, we trained our algorithms on
data for which the dopamine release differences are known. The
SVM algorithm used a linear kernel with a binary classifier. With
the kernel denoting a function that reflects the similarity among
observations�the use of a linear kernel leads to the boundary
between the classifier’s decisions being a linear function of the
considered features. The choice of a binary classifier was made
because in each prediction, we are considering two alternatives,
i.e., distinguishing between DLS/DMS regions or distinguishing
between 0.1/0.3 mA stimulation strengths. For the predictions
that are made in our analysis, the linear kernel was selected for its
simplicity and the absence of detailed a priori knowledge
regarding which of the dopamine features would be most
important in distinguishing between stimulation strengths and
eventually between brain regions from which dopamine
originates. We did not consider the RF algorithm with
paroxysmal features as there were too few features (i.e., p = 2)
to consider this as worthwhile analysis. We next evaluated the
predictive capability with the SVM and RF algorithms via a
leave-one-out analysis with Monte-Carlo sampling of all animals

and brain slices. The Monte-Carlo analysis consists of the data
being repeatedly divided into a training and test set with the test
data consisting of a single observation, while the remaining data
was evenly partitioned into two groups and used to train the
machine. The computational pipeline is depicted in Figure 2 and
was used to make predictions from the considered data.
Machine Learning Can Distinguish Dopamine Release

at Different Stimulation Strengths. Stimulation of nIRCat-
labeled brain slices shows higher dopamine release as a function
of stimulation strength, as expected and previously demon-
strated.2 Therefore, to validate the ability of our machine
learning algorithm to distinguish between dopamine modu-
latory behavior with a known dependence on experimental
condition, we first assessed whether our algorithms could
distinguish between nIRCat-labeled brain slices stimulated with
0.1 or 0.3 mA stimulation strengths. To avoid the confounding
effect of brain region on this analysis, we compared 0.1 mA
versus 0.3 mA stimulation in DLS separately from DMS.
The SVM and RF algorithms were implemented with the

different groups of features listed in Table 1. Running SVM with
all 10 features is denoted via SVM (10), while using only the 8
statistical and 2 paroxysmal features is denoted by SVM (8) and
SVM (2), respectively. The same notation is used with the RF
algorithm�i.e., RF (10) represents implementing RFwith all 10
features. The pipeline in Figure 2 was followed to attain an AR
for each of the stimulation strengths. Our results indicate that an
accurate discernment of the stimulation strength in the DLS and
DMS is not possible from brain slices generated from 4- and 8.5-
week-old mice with SVM or RF algorithms, although SVM
performed slightly better in the DLS than in the DMS at 4 weeks.
At 4 weeks, the aggregate accuracy (“aggregate” denotes
averaging the 0.1 and 0.3 mA results to provide a holistic
account) in the DMS does not exceed chance, while the best
discernibility occurs from data taken in the DLS with the SVM
algorithm and is 0.557 (Figure 3A). At 8.5 weeks, nIRCat

Figure 1. Feature extraction procedure of using nIRCat to image electrically-stimulated dopamine release in mouse brain slices. (A) Cartoon depiction
of generation of nIRCat-labeled brain slices. (B) Representative images of stimulated dopamine release in acute striatal slices. (C) Processed dopamine
trace depicting neurotransmitter release after electrical stimulation from a single dopamine release site. (D) A single dopamine trace annotated with the
mined features.
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features provide a better indication for whether a 0.1 or 0.3 mA
stimulation amplitude was used in the DMS region with the best
AR being 0.649 for the RF (8) algorithm. Here, the aggregate
accuracy in the DLS barely exceeds chance (Figure 3B).
However, as mice age to 12 weeks, the distinguishability
generally increases when using the SVM or RF algorithms in
both the DLS and the DMS brain regions. At 12 weeks, the
aggregate accuracy in both DLS and DMS consistently exceeds
chance for both algorithms, with the best discernability
occurring from data taken in the DLS with the RF algorithm
at an AR of 0.832 (Figure 3C). For the ML analysis, we evaluate
statistical significance by considering the aggregate predictive
ARs that exceed 0.65, which is approximately one sigma greater
than the chance value of 0.5 (binary classification). It is
interesting that the prediction accuracy of our machine learning
algorithms consistently increases as a function of animal age,
going from chance at 4 weeks to maximum ARs of 0.649 (RF
(8)) at 8.5 weeks and 0.832 (RF (8)) at 12 weeks. Importantly,
we note that the 12-week-old animal cohort exclusively exhibits
prediction accuracies exceeding 0.65 (Figure 3C). These results
suggest that dopamine signaling variability in young animals is
larger than adult animals, and that this variability precludes

machine learning based discrimination of stimulation strength.
Biologically, a 4-week-old mouse corresponds to a prepubescent
young animal, with the 8.5-week timepoint representing mice
that have shifted into sexual maturity, and 12-week-oldmice well
into adulthood. Our results confirm that dopamine dynamics are
still developing across our timepoints, with much more
variability in the kinetics and features of dopamine release in
young animals that confounds machine learning algorithms and
prevents distinguishing stimulation strengths in 4 (and to a
lesser extent 8.5) week-old animals. Interestingly, by the time
animals age into adulthood (12 weeks). It is possible that
dopamine release and reuptake features have stabilized and
enable us to clearly distinguish between stimulation strengths.
This indeed represents the adult age group of prior work
showing increasing dopamine release as a function of
stimulation strength.2 These results are important because
they suggest that dopamine measurements taken in prepubes-
cent animals undergoing development may introduce a high
degree of biological variability and may prevent experimentation
using dopamine signaling outputs as the sole form of
measurement, particularly when the predicted biological effect
size is small or moderate. Conversely, dopamine imaging

Figure 2. Machine learning workflow to predict the electrical stimulation strength applied to brain slices or the brain regions of dopamine release. The
sets A and B may correspond to the groups of brain slices stimulated at 0.1 or 0.3 mA�alternatively, the sets may correspond to the groups of brain
slices stimulated in the DMS or DLS. The notation |.| refers to the number of elements in the set (i.e., cardinality). The above sequence is repeated 1000
times to arrive at a classification accuracy rate (AR). Each iteration encompasses a SVM or RF being trained on features from training data prior to the
machine being presented with one left-out data point from each of the two groups. The AR is attained by computing the fraction of times the labels of
the left-out samples from set A and B were correctly predicted as being equal to their ground-truth values.
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measurements taken from adult animals exhibit less biological
variability, enabling our machine learning algorithms to clearly
distinguish between the stimulation amplitudes used, as
expected.

Machine Learning Algorithm Implemented To Ex-
plore Dopamine Modulatory Differences between the
DLS and DMS Brain Regions. Having confirmed that our
SVM and RF algorithms are able to distinguish between brain

Figure 3. Predictive accuracy in distinguishing between 0.1 and 0.3 mA stimulation strengths of the DLS and DMS. Different time points were
considered in the ages of the mice�subfigures (A), (B), and (C) correspond to results for the data collected from animals of 4, 8.5, and 12 weeks of
age, respectively. The asterisk denotes significance in the aggregate predictive capability exceeding the 0.65 AR, which is approximately one sigma
greater than the chance value of 0.5 (binary classification).
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tissue slices stimulated at 0.1 or 0.3 mA in adult mice, we next
sought to determine whether machine learning could be used to
distinguish DLS or DMS striatal brain regions based only on the
dopamine release and reuptake features from each region. To
this end, we implemented theMonte-Carlo technique with 1000
iterations with the SVM and RF algorithms. To use a balanced
training set for the predictive analysis, an equal number of DLS

and DMS brain slices were used to train the machine prior to
testing on one held-out DLS and DMS brain slice, which
represent a recording that was not used as part of the training
data. The AR in predicting whether a recording was made from
the true striatal brain region was evaluated by counting the
number of times that a correct classification was made for the
held-out DLS and DMS samples across all iterations. The result

Figure 4. Predictive accuracy and feature importance rankings attained with the machine learning pipeline. Accuracy of predicting whether a recording
wasmade from theDLS orDMS at a stimulation strength of 0.3mA. The quantities in the parentheses indicate the number of features that were used to
train the machine and form the test data in the machine learning analysis. The subfigures (A), (C), and (E) correspond to results for the data collected
from animals of 4, 8.5, and 12 weeks of age, respectively. The asterisk denotes the significance in the aggregate predictive capability exceeding the 0.65
accuracy rate, which is approximately one sigma greater than the chance value of 0.5 (binary classification). The corresponding heatmaps (B), (D), and
(F) illustrate a ranking of each feature’s importance in contributing to the RF classification decision when 10 features (Table 1) were used.
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is normalized by the number of iterations, 1000, used as part of
the pipeline, and an aggregate AR was computed by averaging
the AR of held-out data from the DLS with that attained with
held-out data from the DMS. The choice of 1000 iterations was
deemed large enough to sufficiently cover the number of
combinations (i.e., Monte-Carlo sampling) of leave-one-out
scenarios. The differences in the results seen with a higher
number of iterations were negligible. We consider the predictive
capability of our algorithm as being acceptable if the two
constituent ARs exceed the chance value of 0.5. Chance is a
sufficient cutoff value since expert experimenters were unable to
identify any of the tested classification problems better than the
chance rate. The steps for the analysis and the prediction on test
data are depicted in Figure 2, and the machine learning pipeline
is the same as we used to assess whether the stimulation
strength�i.e., 0.1 or 0.3 mA�can be determined from the
dopamine modulatory signals.
It is often beneficial to be cognizant of the features that are the

most important in making a classification, whether it be to
distinguish stimulation strength or brain region. The RF
machine learning algorithm is a tree-based method that readily
provides an account of the features that are the most important
in arriving at its decisions. Biologically, it is possible that certain
features may be more important in distinguishing stimulation
strengths or brain regions�e.g., to distinguish between
stimulation strengths, a higher stimulation amplitude may
evidently increase the max dF/F (more dopamine) without
affecting the decay of dF (the rate at which dopamine is cleared
from tissue). Conversely, differences in dopamine transporter
expression in DLS versus DMS may affect dopamine clearance
rates from tissue without affecting dopamine release features.
For the development of our RF algorithm, we therefore utilized a
node purity metric to evaluate which of the stimulated dopamine
features are the most important to the RF technique’s decisions.
The node purity metric is equated to the total variance
computed across the classes, with lower variance levels
associated to a feature implying that in the trees’ arriving at a
decision, a decision based on that feature contained a high
percentage of data from one class (i.e., 0.1 mA vs 0.3 mA or DLS
vs DMS). Thus, the node purity metric provides a quantitative
measure of the features’ importance in the RF classification
decision. Unlike the RF algorithm that accounts for the relative
contribution of each feature in arriving at its decision, the SVM
algorithm does not. For SVM, the solution is a vector that
determines a hyperplane setting the boundary between the
decision regions. The vector for SVM is the solution of a
quadratic optimization problem, and the variable selection is
typically applied by penalizing a norm on the optimization
vector to suppress unimportant features from appearing in the
solution. An alternative brute-force means of performing feature
selection for SVM involves iteratively removing features or
groups of features and evaluating the accuracy of the procedure
on portions of the data set.
Differentiating Dopamine Release from DLS versus

DMS with nIRCat Recordings. We next used the machine
learning pipeline developed to differentiate dopamine dynamics
to study nIRCat recordings from the DLS and DMS of acute
brain slices collected from 4-, 8.5-, and 12-week-old mice, as
depicted in Figure 2. For this approach, we used data only from
0.3 mA stimulations, as they provided clearer nIRCat signals
than the lower 0.1 mA stimulation amplitudes. SVM and RF
approaches were used to process stimulated dopamine imaging
videos on datasets segregated by animal age. The results, as

shown in Figure 4, indicate that at 4 weeks of age, SVM provided
better ability to distinguish whether dopamine was imaged from
the DLS or DMS of a brain slice: an SVM operating on the 8
statistical features, as listed in Table 1 provided the best
performance via an AR of 0.615. RF also provided above-chance
predictive capability, with an AR of 0.573 and 0.569 for the
combined and statistical features, respectively, but inferior to
that attained with the SVM for the same considered feature
groups (Figure 4A). Conversely, at 8.5 weeks, the best
differentiation in whether dopamine was released from the
DLS or DMS is achieved with the RF algorithm. The aggregate
ARs with RF exceed 0.6, with an AR of 0.69 noted when using all
8 statistical features. At 8.5 weeks, the SVM performance with
the combined features is only marginally above chance with an
aggregate accuracy rate of 0.568. For this latter scenario, the
machine trained on nIRCat recordings classifies the majority of
dopamine release events as having arisen from the DMS (Figure
4C). Thus, a rather high accuracy rate of 0.798 is noted in
differentiating DMS recordings, but poor aggregate accuracy is
apparent via the classification of the majority of DLS dopamine
releases said to have stemmed from the DMS. Explicitly, out of
the 1000 iterations, 798 iterations were accurately classified as
being via DMS stimulation, whereas only 318 iterations were
accurately classified as having resulted from DLS stimulation. At
12 weeks, the SVM again yields superior predictive capability
over RF with accuracy rates of 0.64 with the 10 (i.e., combined)
features, and 0.708 with 8 statistical features (Figure 4E). At
each of the three animal ages, the use of the paroxysmal features
did not provide above-chance predictive accuracy of enabling
differentiation of the signal as having originated from DLS or
DMS. In general, higher accuracy rates are noted in Figure 4
when considering the statistical or combined features rather
than paroxysmal features (not pictured). The better accuracies
obtained with statistical or combined features highlights the
importance of considering statistical rather than transient or
paroxysmal aspects of the dopamine recordings for the purpose
of identifying the striatal region from which those dopamine
modulatory features originate. In summary, at the three
considered animal ages, when providing a 0.3 mA stimulation
pulse to elicit dopamine release, nIRCat dopamine images and
their features provide a biomarker for differentiating whether the
dopamine was released from the DLS or DMS region.
Interestingly, the predictive capability in differentiating the
brain region with 0.3 mA electrical stimulation increased as a
function of animal age, similarly to our age-dependent ability to
use machine learning algorithms to distinguish between
stimulation strengths. Specifically, the best aggregate accuracy
rate at 4 weeks was 0.629, while at 8.5 and 12 weeks, we noted
accuracy rates of 0.69 and 0.708, respectively. These results
support our prior findings and hypothesis that early in animal
development there exists high variability in dopamine release
and reuptake activity in a manner that equilibrates in adulthood.
Feature Importance for Differentiating DLS from DMS

with Dopamine Modulatory Signatures. We have con-
firmed that stimulated dopamine release imaging in acute slices
provides machine learning algorithms, such as SVM and RF, the
ability to distinguish between stimulation strength (0.1 mA vs
0.3 mA) and brain region (DLS vs DMS). Interestingly, we also
find that our predictive capabilities are directly proportional to
animal age, supporting the hypothesis that dopamine signaling
dynamics are more variable early in development and stabilize in
adulthood. We next determined which features of our dopamine
recordings are most important for the predictions that were
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made by the machine learning analyses. With RF, the node
purity measure was used to determine the feature importance.
The heatmaps in Figure 4B,D,F provide an account of the
frequency at which each of the 10 considered dopamine
recording features were ranked in their importance for arriving at
a prediction. For striatal slices obtained from mice that were 4
weeks old, the AUC was the most important feature for
determining whether a recording was made from the DLS or
DMS with a frequency of 0.809. At 4 weeks of mouse age, the
max[dF], ROI number, and decay dF were the prominent
second-most important features with frequencies of 0.365,
0.284, and 0.167, respectively. Conversely, min[dF], Var[dF],
and the two paroxysmal features were the least important
features for distinguishing DLS from DMS at 4 weeks. At 8.5
weeks, the ROI number (frequency of 0.873) and decay dF
(frequency of 0.857) were the most and second-most important
features for distinguishing striatal brain region, respectively. In
contrast to the 4 week time point, the AUC was among the least
important features to distinguish brain region at 8.5 weeks, while
Var[dF] was again deemed a feature unimportant to distinguish
brain region, consistent with our 4 week analysis. At 12 weeks,
ROI number is the most important feature to distinguish DLS
from DMS with the highest frequency (0.859) while the two
paroxysmal features and min[dF] are the least important
features in the RF determination of the brain region that had
stimulation-induced dopamine release measured by nIRCat. In
sum, max[dF] and ROI number� representative of the
maximum amount of dopamine released and the number of
dopamine release sites, respectively�were consistently among
the most important features to distinguish DLS from DMS
striatal brain regions. Conversely, features associated with the
variability of the baseline nIRCat nanosensor fluorescence, such
as Var[dF] and min[dF], were consistently unimportant in
distinguishing brain regions, as expected.
A strength of inference and prediction via machine learning

lies in evaluating a multidimensional dataset, where a single
predictive feature might not exist. Machine learning approaches
can also facilitate a blind analysis of a dataset to avoid evaluator
bias. Our machine learning algorithm highlighted max[dF] and
ROI number as features that are consistently important across
timepoints for distinguishing DLS from DMS brain regions. To
verify that these features enable discrimination of nIRCat images
taken from DLS versus DMS, we proceeded with a
methodological analysis of our datasets, considering max[dF]
and ROI number. We plotted the distribution of the features to
visualize the difference in recorded values between DMS and

DLS at each time point (Figures 5 and S1). In Figure S2, a two-
sample Kolmogorov−Smirnov (KS) test was performed to
determine whether the calculated features significantly vary
between the nIRCat recordings collected from the DLS and
DMS at a 0.3 mA stimulation strength. Interestingly, the only
feature that met the significance criterion was the AUCwhen the
recordings were made at 4 weeks. This corroborates the utility of
the ML analysis in distinguishing differences that would
otherwise not be identified as significant with conventional,
univariate statistical techniques.

■ CONCLUSIONS
The past few years have seen the development of various tools to
image neuromodulators, and specifically dopamine modulatory
dynamics, at the spatiotemporal scales of relevance for
endogenous neurochemical signaling. As these tools emerge,
the rich datasets they generate in the form of videos of dopamine
signaling dynamics provide many features, some of which may
be more helpful than others in distinguishing biological
phenomena. It is therefore of interest to develop and assess
tools that quantify the release, volume transmission, and
reuptake of neuromodulators, such as dopamine, where the
observed spatial and temporal dynamics are dependent on
dopamine receptor activation, dopamine transporter activity,
neuronal activity, and neuronal tissue microstructure. It is also
important to develop computational analyses to reduce bias,
particularly those that analyze datasets manually.
In this manuscript, with features computed via dopamine

nIRCat recordings, we are able to distinguish between striatal
subregions and stimulation strengths in adult mice using a SVM
and a random forest classifier. The latter addresses the bias-
variance trade-off by reducing variance and avoiding overfitting,
while the former provides robust performance. Our results
indicate that an accurate discernment of the stimulation strength
in the DLS and DMS is not possible from very young mice (i.e.,
prepubescent or young adult); however, as mice age, the
distinguishability increases in both brain regions. The prediction
accuracy of our machine learning algorithms consistently
increases as a function of animal age. Increased variability in
the kinetics and features of dopamine release in young animals is
noted, and likely to contribute to this reduced accuracy in
distinguishability. Our findings suggest that by the time animals
reach adulthood (i.e., 12 weeks), it is possible that dopamine
release and reuptake features have stabilized, thus enabling more
accurate distinguishability among the stimulation strengths. The
results are important to the growing community of dopamine

Figure 5. Univariate distribution of several features deemed important for distinguishing DLS from DMS brain regions. Violin plots of max[dF] (A)
and ROI number (B) across age groups for DLS (light blue) versus DMS (dark blue) brain regions. The dashed lines indicate the 25th, 50th, and 75th
percentiles of the distribution.
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imaging researchers in motivating more careful consideration of
cross-age group comparisons of dopamine signaling features.
Overall, higher predictive capabilities were noted with the

statistical or combined features suggesting that the entire-
recording statistics rather than the transient or paroxysmal
aspects of dopamine modulatory kinetics are biomarkers of the
striatal region fromwhich the signals originated. Feature analysis
enabled us to determine that the statistical properties of
recordings rather than their transient or paroxysmal properties
are more important in determining the striatal region where the
dopamine release originated. Additionally, it is interesting that,
similar to the age-dependent increase in the capability to
distinguish among stimulation strengths, the differentiability of a
brain region increased with the age of the animals. The results
indicate that the dopamine release and reuptake dynamics are
rather variable early in animal development but equilibrate in
adulthood. The nascent research of dopamine imaging typically
considers the magnitude of the change in the dopamine signal.
Our results show that a machine learning approach can exploit a
group of features (i.e., in Table 1) to discern neurochemical
properties across brain regions in a manner that individual
feature analysis does not. The ML approach provides a user-
removedmeans for identifying changes in amanner that may not
be practical, reproducible, or accurate with classical waveform
analysis. The features that we have computed from the
waveforms have physical meaning (e.g., the paroxysmal/
burstiness of a waveform) that provide biological insight into
attributes that are driving an outcome. By making use of
biologically derived features from the waveforms, rather than the
complete waveforms, the approach also provides a dimension-
ality reduction. Information is extracted from entire waveforms
via single-number summary statistics prior to the ML analysis
outputting the prediction.
Future advancements to this study are possible on the

computational front. It would be advantageous to use more
sophisticated kernel functions that are matched to the properties
of the waveforms. This would involve deriving and incorporating
a priori information from dopamine signals and the experimental
conditions. The incorporation of additional features also
constitutes an extension, for instance features that account for
the timing properties of the waveforms such as τoff. Furthermore,
more complex classification tasks or combining different
neuronal activity data types could enhance the accuracy at
making correct predictions with neurochemistry datasets. For
instance, adding more features could enhance the translation of
all traces further enhancing our classification ability. Similarly,
merging datasets from both neurochemical efflux and neuronal
activity could further enhance the predictive capabilities of our
algorithm. Nonetheless, our current study demonstrates that
machine learning approaches are able to differentiate DLS from
DMS striatal subregions of the mouse brain, in a manner
unachievable with statistical analysis of the data alone. These
findings suggest machine learning approaches to studying
neurochemical dynamics could help differentiate between
cohorts when classical statistical analyses find no differences
with single-feature comparisons. For instance, recent study has
shown that dopamine dynamics in late-stage Huntington’s
disease show a blunted ability to release dopamine at the single
synapse level, and suggest that the dysregulation is driven by D2-
autoreceptor regulation of dopamine release through Kv1.2
channels in late-stage Huntington’s disease.9 However, these
findings were only shown to be statistically significant for late-
stage Huntington’s disease, despite trends at earlier timepoints

that suggested dopamine signaling deficits present earlier in
disease. Machine learning could help confirm the absence or
presence of differences in such disease cohorts, potentially
enabling the pinpointing of earlier onsets of variabilities in
neurochemical signaling and what features of signaling drive the
differences.
Herein, we have developed our machine learning algorithms

and demonstrated their capabilities in differentiating datasets in
a manner unachievable with statistical analysis of single features.
However, the methods evoked in this study are not specific to
dopamine signaling nor nIRCat-acquired data, rather they could
be extrapolated to other time series data, such as additional
neuromodulator probes emerging in the neuroimaging
toolkit,2−4 or imaging datasets of neuron activity, such as
GCaMP-based probes. Expansion of this study can apply the
same workflow to identify previously unnoticed trends.
Moreover, future study may identify and introduce new features
that raise the capability of a classifier. An exciting future avenue
is to consider whether the above-mentioned neurochemical or
neural activity datasets can collectively improve the precision of
machine learning algorithms when trained on these different
neuronal signals. It would be interesting to investigate whether
the same features we identified in dopamine modulatory traces
(i.e., peak dF/F and ROI number) are the most predictive for
other neurotransmitters that exhibit different signaling dynamics
in various brain regions. It is conceivable that separate machines
must be trained to make predictions when considering different
neurotransmitters, or that independent datasets would collec-
tively enhance the performance of a machine despite inputs from
different biological pathways. Beyond this study, many datasets
exist in the literature and could readily benefit from machine
learning and feature mining approaches. This includes analyses
of neuronal activity and neurochemical signaling data from the
growing number of neurotransmitter, neuromodulator, and
neuropeptide optical probes.2,4,15−19 Machine learning-based
analysis of neurochemical imaging datasets could provide a user-
independent approach to analyzing neurochemical imaging
features and implementing those analyses to advance neuro-
biology research.

■ METHODS
nIRCat Sensor Production. The nIRCat nanosensor is produced

by combining 100 μL of a 2 mg/mL solution of HiPCO raw single-
walled carbon nanotubes (SWNT) suspended in molecular biology
grade water, 100 μL of a 1× phosphate buffered saline (PBS) solution,
and 100 μL of a 1 mM (GT)6 ssDNA solution. The combined solution
is probe tip sonicated for 10 min, then centrifuged at 16,000g for 30
min. The supernatant is then filtered through a 160k Da spin filter for 5
min at 8000g. The retentate is then resuspended in water and
centrifuged for 5 min at 1000g. The resulting solution is a fully prepared
nIRCat sensor. The sensor concentration is then calculated by using
absorbance measured at 632 nm. Dopamine response is confirmed by
measuring the fluorescence response of 2 mg/mL solutions of the
sensor before and after addition of dopamine.2,9−11

Acute Brain Slice Generation and Sensor Labeling. All
procedures involving animals were approved by the University of
California, Berkeley Animal Care and Use Committee. Both male and
female B6CBAF1/J mice (https://www.jax.org/strain/100011), were
used for experiments. Mice were group-housed after weaning on
postnatal day 21 (P21) with nesting material on a 12:12 light cycle.
Acute brain slices were produced from three age groups: 4 weeks (P32−
P35), 8.5 weeks (P64−P66), and 12 weeks (P87−P92). To generate
acute brain slices, mice were anesthetized via intraperitoneal injection
of a ketamine/xylazine cocktail. Mice were perfused transcardially using
chilled, ascorbic acid-free cutting buffer (119 mM NaCl, 26.2 mM
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NaHCO3, 2.5 mM KCl, 1 mM NaH2PO4, 3.5 mM MgCl2, 10 mM
glucose, and 0 mM CaCl2). The brain was extracted and mounted on a
vibratome cutting stage (Leica VT1200 S) to produce 300 μm coronal
slices containing the dorsal striatum. The slices were left in ACSF (119
mMNaCl, 26.2 mMNaHCO3, 2.5 mMKCl, 1 mMNaH2PO4, 1.3 mM
MgCl2, 10 mM glucose, and 2 mM CaCl2) to rest at 37 °C for 30 min
followed by 30 min at room temperature. The slices were labeled with
nanosensor by transferring the slices to a small volume incubation
chamber containing oxygen-saturated ACSF and adding nIRCat
nanosensor for a final concentration of 2 mg/L. The slices were
subsequently rinsed in ACSF by transferring them through three wells
of a 24-well plate and left to rest in ACSF for 15 min. The labeled slices
were then transferred to the microscope recording chamber and
allowed to equilibrate for 10 min before imaging. All imaging
experiments were performed at 32 °C.
Stimulation and Image Collection. Following incubation with

nIRCats, the slices were placed underneath a near-Infrared optical
microscope.2 Specific brain regions were identified using a 4× objective
(Olympus XLFluor 4×/340). A bipolar stimulation electrode was
placed 200 μm away from the region to be imaged. Using a 60×
objective, 600 images were collected at a frame rate of 8.33 Hz, with a
100 ms stimulation occurring at the 200th frame. This process was
repeated until the desired amount of replicates was achieved. During
this process, the slices were kept viable by flowing an oxygenated ACSF
solution held at 34 °C over the slices at a rate of 2 mL/min.
Image Processing. Image stacks were imported intoMATLAB and

were segregated into a grid consisting of 25 by 25 pixels (or roughly 7 by
7 microns), as prior study has established that the average dopamine
release site volume transmission radius is 2 μm2 and that 2 μm is an
optimal grid size for nIRCat-based dopamine imaging analysis.9 Each
box within the grid was considered an ROI. A moving average was used
to calculate the baseline of each ROI and subtracted from the original
trace. The resulting trace left for the ROI was a time series of change in
fluorescence. Between frames 200 and 300, the algorithm looked for an
event that was 3 standard deviations above the average noise previously
calculated for this ROI. If an event was found, this ROI was marked
significant. If no event was detected, this ROI was deemed inactive and
no more calculations are completed on this ROI. For each significant
ROI, two exponentials were fit to the trace to determine the time
constant of turn on and turn off. The algorithm also finds values, such as
the maximum change in fluorescence and the area under the curve.2

Machine Learning Classification Methods. The SVM and RF
algorithms were trained on the features in Table 1 to differentiate
among the stimulation strength or the location of dopamine release, as
described above. The SVM used a linear kernel with a binary classifier
andwas implemented in R via the packages e1071 and kernlab.5 A linear
kernel was used for simplicity and also the lack of a priori knowledge of
the relationships between the features and the dynamics, as well as the
source of dopamine release. The RF was implemented via the
randomForest function and package in R.6 The number of variables
used for each split in the tree was specified as p with p = 10 or p = 8 for
the scenarios of using the combined or statistical features, respectively.
In all cases, the number of trees used, was 1000. However, we did not
consider RF with the paroxysmal features, as there were too few
variables (i.e., p = 2) to consider this as worthwhile analysis. The
evaluation of the predictive capability via the classifier AR entailed a
leave-one-out analysis with Monte-Carlo (MC) sampling of the brain
slices. TheMC analysis entailed the data being repeatedly divided into a
training and test set with the test data consisting of a single observation,
while the remaining data was evenly partitioned into two groups and
used to train the machine. The classification decisions that consisted of
distinguishing between possible stimulation strength or brain regions
were binary. For each scenario, the accuracy rates for the two
possibilities were presented in the figures. The third consideration
deemed the “aggregate” consisted of averaging the two accuracy rates to
provide a holistic account. Our consideration of feature importance
used the node purity metric in the RF technique. The metric was used
to evaluate which of the stimulated dopamine features were the most
important in the classifiers’ decisions of the brain region.
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