RTICLE IN PRE

cmg **RESEARCH LETTER**

59

60

81

82

83

84

85

86

Undifferentiated **Induced Pluripo**tent Stem Cells as a Genetic Model for Nonalcoholic **Fatty Liver** Disease Q1

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 46

47

48

49

50

51

52

53

54

55

56

57

58

atient-derived induced plurip-16 Q5 otent stem cells (iPSCs) have been transformational in biomedical research for their ability to differentiate into any cell type while retaining the genetic information of the donor individual, for example iPSC-derived hepatocyte-like cells (iPSC-Heps) for studies of nonalcoholic fatty liver disease (NAFLD).1 However, differentiation protocols are time-intensive, use costly reagents, require highly specialized training, and can result in

heterogeneous cultures that are limited in number.² Thus, iPSC-Heps are poorly suited for studies of genetic variation that require scalability and reproducibility. In contrast, iPSCs exhibit self-renewal, can be cryopreserved, have standardized and robust protocols available for their generation and culturing, and are substantially less expensive to produce. We tested whether iPSCs in their undifferentiated state may be an informative to model genetic factors underlying NAFLD. NAFLD is initiated by hepatic steatosis, often attributed to excess synthesis, retention, or uptake of fatty acids by the liver, where they are stored as triglycerides within lipid droplets. As nearly all cells can take up fatty acids, synthesize triglycerides, and create lipid droplets,³ we sought to determine whether iPSCs could model fatty acid induced lipid accumulation.

Authenicated iPSCs (Supplementary) Table 1)

previously described.⁴ We confirmed 61 that a representative iPSC accumulates 62 63 intracellular lipids in response to 24-64 hour oleate challenge in a dose dependent manner, with lipids detec-65 ted by 2 neutral lipid stains (Nile Red 66 67 and LipidTox Red) and through Simulated Raman Spectroscopy, a highly 68 69 specific detection method for unla-70 beled triglycerides⁵ (Figure 1, A-B). To 71 improve quantitation accuracy, we 72 developed a flow cytometry-based assay (Figure 1, C), resulting in highly 73 74 reproducible measures (Figure 1, D), 75 which confirmed that oleate treatment increased intracellular lipids in cell 76 lines from 30 donors (2.0 \pm 0.11 fold 77 78 mean \pm standard error; $P = 4.0^{e-10}$ (Figure 1, E; Supplementary Table 2). 79 80

We next compared the degree of oleate-induced lipid accumulation in iPSCs from 8 donors both in their undifferentiated state and after differentiation into iPSC-Heps through a 23dav protocol as we previously

were

Figure 1. iPSCs accumulate intracellular lipids when challenged with oleate. (A) Images taken at 100× magnification of an 110 iPSC line challenged for 24 hours with (0-100µM) sodium oleate conjugated to bovine serum albumin (BSA). Cells were 111 stained with 10 µg/mL of Nile Red (pink) to visualize lipid droplets and Hoescht (blue) to stain nuclei. 10-µm size bars shown. FPO 112 (B) Oleate- vs BSA-treated iPSCs were stained with Nile Red or LipidTox Red and visualized via fluorescence microscopy. A 113 separate aliquot of cells was left unstained and subjected to SRS microscopy, in which unstained triglycerides are visualized 40 114 as white areas. 50-µm size bars shown. (C) Representative histogram of Nile Red fluorescence values of BSA- and 100 µM 115 veb oleate-treated iPSCs. Cells were stained with Nile Red prior to quantitation by flow cytometry. (D) Biological replicate measures of intracellular lipid levels in iPSCs from 3 donors (n = 4). (E) Geometric means of the Nile Red fluorescence values 116 indicative of intracellular lipids in 30 iPSC lines treated with BSA and 100 µM oleate.

2 Muñoz et al

117

118

119

120

121

122

123

124

125

126

127

128

129

136 137

Cellular and Molecular Gastroenterology and Hepatology Vol. ■, No. ■

Figure 2. The magnitude of oleate-induced intracellular lipid accumulation in undifferentiated iPSCs is correlated with 130 189 NAFLD genetic risk. Oleate-induced intracellular lipid accumulation was quantified in iPSCs from 30 donors as described in 131 190 Figure 1, and the fold change in lipid accumulation was plotted separated by the number of NAFLD risk alleles for TM6SF2 132 191 and/or PNPLA3 together (A) or separately (B). Linear regression (panel A) and analysis of variance with posthoc multiple 133 192 comparisons against the 0 allele carrier group was performed with adjusted P-values (panel B) are shown. (C) Correlation of 193 134 intracellular lipid accumulation with 4-SNP NAFLD genetic risk score. 135 194

described.⁶ iPSC-Heps were authenti-138 cated by expression of hepatocyte 139 markers and secretion of albumin into 140 the culture media (Supplemental 141 Figure 1, A-B). There were no differ-142 ences in the levels of intracellular 143 lipids in the isogenic iPSCs and iPSC-144 Heps, either with values expressed as 145 absolute levels or the magnitude of 146 change between oleate vs BSA treated 147 cells (Supplemental Figure 1, C-E). 148

Variants in TM6SF2 (rs58542926), 149 PNPLA3 (rs738409), GCKR 150 (rs1260326), and MBOAT7 (rs641738) 151 are all associated with NAFLD in mul-152 tiple independent cohorts, and have 153 published effect sizes for their associ-154 ation with hepatic fat.⁷ All 4 genes had 155 detectable expression in undifferenti-156 ated iPSCs, unlike lymphoblastoid cell 157 lines, another patient-derived cell line 158 (Supplemental Figure 2). Importantly, 159 iPSCs carrying increasing numbers of 160 rs58542926 and rs738409 NAFLD risk 161 alleles had greater intracellular lipid 162 accumulation with an additive rela-163 tionship observed ($P = 1.4^{e-5}$) 164 (Figure 2, A). The magnitude of this 165 effect was nearly identical between the 166 2 risk alleles, consistent with their re-167 ported effect sizes' (Figure 2, B). 168 Moreover, we found a significant pos-169 itive correlation ($r^2 = 0.60; P = 4.8^{e-7}$) 170 between oleate-induced intracellular 171 lipid accumulation and a weighted ge-172 netic risk score based on the reported 173 associations of TM6SF2 rs58542926, 174 PNPLA3 rs738409, GCKR rs1260326, 175

and *MBOAT7* rs641738 alleles with hepatic fat⁷ (Figure 2, C).

Here, we show that patient-derived iPSCs in their undifferentiated state can be used to model genetic factors that influence individual-level variation in fatty-acid induced lipid accumulation, critical in NAFLD pathobiology. Compared with iPSC-Heps or liver organoids, iPSCs are significantly more scalable, enabling their use for genetic discovery. This could support future use of iPSCs for identifying high-risk individuals, testing variation in response to treatment, and informing the development of precision medicine guidelines for NAFLD prevention and management. Our results also raise the possibility of using iPSCs for investigating genetic influences on other diseases characterized by excess lipid storage. Notably, both the TM6SF2 rs5854296 and PNPLA3 rs738409 risk variants are thought to cause lipid accumulation in hepatocytes by impairing intracellular lipid transport and reducing triglyceride secretion in APOB-containing lipoprotein particles,^{8,9} processes that has not been identified in iPSCs. Additional study is needed to assess the mechanisms underlying these relationships and determine the extent to which NAFLD relevant pathways can be modeled in the iPSC. Lastly, these findings challenge the current paradigm of iPSC use, which assumes that cells must be

differentiated to be informative, highlighting the potential utility of undifferentiated patient-derived iPSCs as a cellular model of individual level disease risk. 195

196

197

198

199

200

201

202

203

ANTONIO MUÑOZ	Q7 204
ELIZABETH THEUSCH	205
YU-LIN KUANG	206
GILBERT NALULA	207
Department of Pediatrics	208
University of California San Francisco	209
San Francisco. CA	210
	211
CAITLIN PEASLEE	212
Department of Pathology	213
University of California San Francisco	214
San Francisco, CA	215
CARDIEL DODI HIAC	216
Bionhusias Craduate Croun	217
Diophysics Glaudale Gloup	218
Portrology CA	219
Derkeley, CA	220
MARKITA P. LANDRY	221
Department of Chemical and Biomole-	222
cular Engineering	223
University of California Berkeley	224
Berkeley, CA	225
Chan Zuckerberg Biohub	226
San Francisco, CA	227
· · · · · · · · · · · · · · · · · · ·	228
AARON STREETS	229
Biophysics Graduate Group	230
University of California Berkeley	231
Berkeley, CA	232
Chan Zuckerberg Biohub	233
San Francisco, CA	234

Month 2022

- 235 Department of Bioengineering
- 236 University of California Berkeley 237 Berkeley, CA
- 238
- RONALD M. KRAUSS 239
- **Department of Pediatrics** 240
- University of California San Francisco 241
- San Francisco, CA and 242
- Department of Medicine 243
- University of California San Francisco 244
- San Francisco, CA 245
- 246 CARLOS IRIBARREN
- 247 Kaiser Permanente Division of
- 248 Research
- 249 Oakland, CA
- 250 ARAS N. MATTIS 251
- Department of Pathology 252
- University of California San Francisco 253
- San Francisco, CA and 254
- 255 Liver Center
- University of California San Francisco 256
- San Francisco, CA 257
- 258 MARISA W. MEDINA
- 259 **Department of Pediatrics**
- 260 University of California San Francisco 261
- San Francisco, CA 262

263 Correspondence

Address correspondence to: Dr Marisa Medina, 264 Department of Pediatrics, University of California San 265 _{Q2} Francisco, San Francisco, CA 94143. e-mail: marisa. 266 medina@ucsf.edu.

267 References 268

288

289

290

291

292

293

- 1. Boeckmans J, et al. Pharmacol 269 270 Res 2018;257-267.
- 271 2. Godoy P, et al. Arch Toxicol 272 2013;1315-1530.

- 3. Bosch M, et al. Science 2020; 370:eaay8085.
- Kuang YL, et al. Stem Cell Res 4 2019:101434.

- Cao C, et al. Anal Chem 2016; 5. 4931-4839.
- 6. Peaslee C, et al. Hepatology 2021;2102-2177.
- 7. Dongiovanni P, et al. J Intern Med 2018;356-370.
- 8. Diraison F, et al. Diabetes Metab 2003;478-485.
- 9. Donnelly KL, et al. J Clin Invest 2005;1343-1351.

Abbreviations used in this paper: iPSCs, induced pluripotent stem cells; iPSC-Hep, iPSC-derived hepatocyte-like cells; NAFLD, nonalcoholic fatty liver disease.

© 2022 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/). 2352-345X

https://doi.org/10.1016/j.jcmgh.2022.07.009

Received June 23, 2022. Accepted July 12, 2022.

Acknowledgment

The authors thank all of the POST participants without whom this study would not be possible, as well as Meng Lui and Gabriela Sanchez for their assistance with recruitment. Kristin Stevens assisted with RNAseq library preparation, and some iPSCs were generated by the University of Florida iPSC Core. Aaron Streets and Markita P. are Chan Zuckerberg Landry Biohub Investigators. Aaron Streets is a Pew Biomedical Scholar.

iPSCs as a NAFLD genetic model 3 **CRediT Authorship Contributions** 294 Antonio Munoz-Howell, MSc (Data curation: 295 Lead; Formal analysis: Lead; Investigation: Lead; 201

Methodology: Lead; Validation: Lead;	296
Visualization: Lead; Writing – original draft: Lead;	297
Elizabeth Theusch, PhD (Investigation:	298
Supporting; Writing – review & editing: Equal)	299
Writing – review & editing: Supporting)	300
Gilbert Nalula, BS (Investigation: Supporting;	301
Writing – review & editing: Supporting)	302
Writing – review & editing: Supporting)	303
Gabriel Dorlhiac, PhD (Investigation: Supporting;	304
editing: Supporting; Writing – review &	305
Markita P. Landry, PhD (Visualization:	306
Supporting; Writing – review & editing: Supporting)	307
Writing – review & editing: Supporting)	308
Ronald Krauss, PhD (Funding acquisition: Equal;	309
Supporting; writing – review & editing: Supporting)	310
Carlos Iribarren, PhD (Funding acquisition: Equal;	310
Writing – review & editing: Supporting)	317
Funding acquisition: Equal; Investigation:	212
Supporting; Methodology: Supporting;	214
editing: Supporting; Writing – review &	215
Marisa Medina, PhD (Conceptualization: Lead;	315
Data curation: Supporting; Funding acquisition:	316
Equal; Writing – review & editing: Equal)	317
	318
Conflicts of interest	319
is a consultant for Hepatx. Ambys Medicines, and	320
BioMarin. The remaining authors disclose no	321
conflicts.	322
Funding	323
This work was supported by the National Institutes	Q4 324
of Health P50 GM115318 (Marisa W. Medina, Bonald M. Krauss) B01DK127718 (Marisa W.	325
Medina, Aras N. Mattis), P30 DK026743 (Aras N.	326
Mattis), the National Science Foundation 1845623	327
(Aaron Streets), and the Program for Breakthrough Biomedical Research which is	328
partially funded by the Sandler Foundation	Q6 329
(Marisa W. Medina, Aras N. Mattis). The funding	330
analysis, or interpretation of data.	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	347
	2/5
	245
	s/ • •

- 347
- 348 349
- 350
- 351
 - 352

353 Supplementary Materials 354 and Methods 355

356 Post Induced Pluripotent Stem 357 Cell (iPSC) Donor 358

359 **Demographics**

360 Cell line donors were genotyped on 361 Illumina Infinium OmniExpressExome 362 bead chips. Thirty-five iPSC lines were 363 selected for this study based on their 364 sex, ancestry, and genetic information 365 (Supplementary Table 1). Because 366 most of the nonalcoholic fatty liver 367 disease (NAFLD) genetic studies have 368 been performed in individuals of Eu-369 ropean ancestry, we used cell lines 370 from donors of European descent so 371 the effect sizes and genetic risk score 372 would be most accurate. 373

374 iPSC and iPSC-derived 375 Hepatocyte-like (iPSC-Hep) 376 Cell Culture 377

iPSCs were cultured in mTESR1 378 media at 37 °C at 5% CO₂. iPSCs were 379 passaged using accutase (Stemcell 380 Technologies, Cat. # 07920) and media 381 supplemented with Y-27632 2HCl in-382 hibitor (Selleckchem, Cat. # S1049). 383 iPSC-Heps were cultured at 37 °C and 384 5% CO₂ in Lonza Hepatocyte Culture 385 Medium (HCM; Cat. # CC-3198). iPSCs 386 were differentiated into hepatoblasts 387 as previously published.¹ Expression of 388 hepatocyte-specific markers albumin 389 and hepatic nuclear factor 4 alpha 390 (HNF4A) were confirmed by 391 fluorescence-activated cell sorting at 392 a threshold of >90% dual-positive 393 cells. 394

Intracellular Lipid Accumulation

iPSCs and iPSC-Heps were grown to 397 70% to 75% confluency in 6-well 398 plates. Cell lines were challenged with 399 HCM containing 0 to 100 μ M oleate 400 conjugated to fatty acid-free (FAF) 401 bovine serum albumin (BSA), and all 402 BSA-containing supplements were 403 removed. A volume of FAF-BSA equiv-404 405 alent to the oleate condition was used 406 as a negative control. After 24 hours, cells were fixed with 10% 407 408 paraformaldehyde.

409

395

396

- 410 411

Flow Cytometry for Quantification of Intracellular Lipids

Cells were stained with Nile Red (Sigma, Cat. # 72485) diluted to 100 μ g/mL in Dulbecco's phosphatebuffered saline for 30 minutes, and fluorescence was quantified using the BD LSRFortessa. Data was analyzed using FloJo v10.7.1. Oleate-induced increases in cellular lipids were quantified as the fold change of the oleatetreated/BSA-treated cells. Two outliers were identified using the ROUT test. Because they were from the same batch of samples, all 5 samples in the batch were excluded from the analyses, resulting in a sample size of n = 30. Paired Student *t* tests were used to identify statistically significant differences between BSA- and oleate-treated cells. Linear regression was used to evaluate the correlation between variation in the magnitude of oleateinduced increase in intracellular lipid accumulation and the number of TM6SF2 rs58542926 and/or PNPLA3 rs738409 risk alleles. All statistical analyses were performed using JMP Pro 16.0.0 and GraphPad Prism version 9.1.0.

Calculation of a Weighted NAFLD Genetic Risk Score

A 4 single nucleotide polymorphism (SNP)-weighted genetic risk score (GRS) was calculated for each iPSC line using the following variants: rs738409, PNPLA3 TM6SF2 rs58542926, GCKR rs1260326, and MBOAT7 rs641738 using previously estimated effect sizes for their relationships with hepatic fat.² The DHS coefficients used were 0.2653 for each rs738409 G allele, 0.2711 for each rs58542926 T allele, 0.0649 for each rs1260326 T allele, and 0.0575 for each rs641738 T allele. The GRS was calculated as the sum of the product of the weights for each SNP and the numbers of each risk allele present.

Fluorescence Microscopy

Cells were stained with Nile Red (100 µg/mL) and Hoescht 33342 (5 μ g/mL) for 30 minutes (ThermoFisher, 412 Cat. # H3570). Images were captured 413 on a Keyence BZX-700 microscope at 414 $100 \times$ and $20 \times$ magnification using 415 phase contrast and widefield fluores-416 cence microscopy. Fiji was used to 417 quantify both nuclei and lipid droplet 418 counts as well as the integrated in-419 tensity of lipid droplets in $100 \times$ 420 421 images.

422

423

424

425

426

Stimulated Raman Spectroscopy (SRS) Microscopy

The dual output of a commercial 427 oscillator/optical parametric oscillator 428 (Insight DS+, Spectra-Physics) was 429 used for SRS imaging. The output of 430 the optical parametric oscillator was 431 set to 802 nm corresponding to a 432 wavenumber of $\sim 2850 \text{ cm}^{-1}$ with the 433 fundamental at 1040 nm used as the 434 Stokes field. The fundamental was 435 amplitude modulated at 10.28 MHz 436 using a resonant EOM (EO-AM-R-C2, 437 Thorlabs) and a Glan-laser polarizer 438 (Thorlabs). The 802 and 1040 nm 439 beams were combined on a 1000 nm 440 short-pass dichroic mirror (Thorlabs) 441 and fed into a commercial inverted 442 scanning microscope (Olympus IX83-443 FV1200). Temporal coincidence of the 444 pulses was controlled using a variable 445 delay stage placed on the 802 nm arm 446 (FCL200, Newport). A 60× water-447 immersion objective (1.2 NA) was 448 used for imaging (UPLSAPO60XWIR, 449 Olympus), with a 1.4 NA oil-immersion 450 condenser (CSC1003, Thorlabs) used 451 to collect the light sent to the detector. 452 The Stokes beam was blocked using a 453 1000 nm shortpass filter (Thorlabs), 454 and the 802 nm pump was detected on 455 a photodiode reverse biased at 61.425 456 V. The output of the photodiode was 457 demodulated by a lock-in amplifier 458 (H2FLI, Zurich Instruments) for image 459 formation. All images were acquired at 460 512×512 pixels per field of view, 461 using a pixel dwell time of 10 μ s, and a 462 lock-in time constant of 3 μ s. The 463 average power of both the 802 and 464 1040 nm lines was 10 mW. Intracel-465 lular lipid content was measured as the 466 integrated SRS signal at 2850 cm⁻¹, 467 468

- 469
- 470

Month 2022

which primarily corresponds to CH₂ stretching in lipid molecules. To calculate average cellular lipid content, the images were pseudo-flatfield cor-rected using a Gaussian convolved version of the image as the flatfield (with radius equal to 150 pixels). A thresholded cellular image for each field of view was then produced by first lowpass filtering the image, and then performing an adaptive local his-togram equalization (with radius of 15 pixels).

5 RNA Sequencing Analysis

Isolated RNA was prepared into
polyA-selected, strand-specific
sequencing libraries for 100 bp paired-

end sequencing at the Northwest Genomics Center. Gene expression levels in iPSCs were compared with previously generated RNAsea data. including 426 lymphoblastoid cell lines,^{3,4} primary human hepatocytes from 4 donors (Supplementary Table 3), and 10 biological replicates HepG2. GTEx V8 liver TPM expression levels were downloaded via the GTEx portal for comparison. Sequence transcript counts per million (TPM) were calculated by dividing the number of sequence fragments aligning to the gene by the gene length in kilobases (FPK). The sum of the FPK for each gene across all samples was then divided by one million to create a

iPSCs as a NAFLD genetic model 3.e2

scaling factor (FPK/million). The FPK530for each sample and gene were then531divided by the scaling factor for that532gene to create the final TPM value.533These values were graphed using534Graphpad prism 9.1.0 and shown as535Log10 TPM.536

References

1. Peaslee C, et al. Hepatology 539 2021;74:2102–2117. 541

- 2. Dongiovanni P, et al. Biomed Res Int 2015;2015:460190. 542
- 3. Theusch E, et al. Pharmacogenomics J 2017;17:222–229. 545
- 4. Theusch E, et al. BMC Genomics 546 2020;21:555. 547

3.e3 Muñoz et al

Month 2022

TM6SF2 PNPLA3 Log Transcripts/Million Transcripts/Million T Supplementary Figure 2. Undifferentiated iPSCs 0.1 express genes identified by NAFLD genetic asso-0.01 Log ciation analyses. PolyA-selected whole tran-0.001 0.1 Primary Hap Primary Hep GTEXLIVET GTEXLIVET scriptome sequencing was .PSC.Hep .PSC.Hep HepGi HepGi ુરુ performed in GTEx liver (n = 226), primary human hepatocytes (n = 4), hu-man iPSCs (n = 48), the human hepatoma HepG2 GCKR MBOAT7 cell line (n = 10), and hu-man lymphoblastoid cell Transcripts/Million Log Transcripts/Million Ā (n = 426),100 -lines and TM6SF2, PNPLA3, GCKR, and MBOAT7 transcript 50· 2.5 1 levels were quantified as transcripts per million. The v-axis is scaled as Log₁₀. 0.1 Primary hepatocytes were FРО 0.01 , gol obtained from 3 female and 1 male donor between 4C/I 0.001 Primary Hep Primary Hep PSC.Hep .PSC.HeP GTEXLIVE GTEX-Liver the ages of 49 and 75 Hepci *⁸⁵⁰ ્રે web years with body mass in-dex ranging from 22.5 to 24.3 kg/m².

3.e5 Muñoz et al

Cellular and Molecular Gastroenterology and Hepatology Vol. ■, No. ■

iPSC line	Sex	Ancestry	PNPLA3 rs738409 # of G alleles	TM6SF2 rs58542926 # of T alleles	4 SNP-weighted GRS
1	F	European	0		0.451
2	M	European	0	1	0.329
3	F	European	0	. 1	0.394
4	M	European	0	0	0.054
5	M	European	0	0	0.122
6	M	European	0	0	0.122
7	F	European	0	0	0.122
8	F	European	0	0	0.065
9	F	European	0	0	0.000
10	F	European	0	0	0.122
11	F	European	0	0	0.180
12	M	European	0	0	0.115
13	F	European	0	0	0.000
14	F	European	0	0	0.122
15	M	European	0	0	0.122
16	F	European	1	0	0.395
17	F	European	1	0	0.388
18	F	European	1	0	0.000
19	M	European	1	0	0.020
20	M	European	1	0	0.455
21	F	European	1	1	0.659
20	NA	European	1	1	0.594
22	N/	European	1	1	0.554
23		European	1	1	0.000
24	E	European	י ס	0	0.530
25	Г М	European	2	0	0.000
20	E	European	2	0	0.653
21	Г	European	2	0	0.000
20	N/	European	2	0	0.000
30	M	European	2	0	0.588
Note: Informe were perform California Sa	ed consent v led with inst n Francisco	was obtained fror itutional review b Benioff Childrer	n all study subjects for the oard approval of both Kais i's Hospitals. Donor individ	creation of induced pluripote er Permanente Northern Calif duals were genotyped using	ent stem cells, and studie: ornia and the University o Illumina Infinium OmniEx
pressExome rs738409, <i>TN</i> F, Female; G	bead chips. <i>16SF2</i> rs585 RS, genetic	A 4 SNP-weight 542926, <i>GCKR</i> rs risk score; iPSCs	ted GR ^S was calculated for 1260326, and <i>MBOAT7</i> rsf s, induced pluripotent stem	er each iPSC line using the fo 641738. I cells; M, male; SNP, single I	bllowing variants: PNPLA

Month 2022

1556 2880 661 1718 155 425 388 579 241 663 245 521 2038 2874 1487 1940 981 1285 2881 359 2881 359 2881 359 2881 359 2881 359 1059 218 32971 6331 11502 3233 11814 2510 1121 2345 1121 2345 255 767 302 864 31121 266 2728 2028 2717 1982 3295 787 3469 1456 302 864 302 864 302 864 349 611 349 611 349 611 <	PSC line	BSA geometric mean	100 μ M oleate geometric mean	
661 1718 185 425 388 579 241 563 245 521 2038 2874 1487 1940 981 1285 2861 3549 2165 218 2861 3549 21601 2088 31754 2123 974 1356 31059 2118 31059 2118 31050 218 31121 2345 31814 2510 31111 2004 1266 2758 2255 767 3965 2120 3790 2559 274 637 349 611 3A 469 302 864 302 864 302 864 302 864 349 611 3A 611 3A 611 3A 90	1	1556	2880	
185 425 388 579 241 563 245 521 2038 2874 1447 1940 981 1285 2881 3649 2881 3649 2881 2684 3974 1366 3974 338 3974 338 3974 338 3974 338 3974 338 3971 6331 11502 3293 31181 2004 1266 2758 2952 8028 717 1982 365 2120 3790 2559 3274 637 3469 1456 302 864 3032 864 349 611 54 349 362 864 3349 611 54 550 365 2120 349 611	2	661	1718	
388 579 241 563 2038 2874 1437 1940 991 1285 2881 3549 2881 3549 2105 281 281 3549 1059 2118 3974 1356 1059 2118 2971 6331 1502 3233 1814 2510 1121 2345 1141 2004 2952 8028 717 1982 2744 637 302 864 349 611	3	185	425	
241 563 2038 2874 1487 1940 981 1285 2881 3549 1601 2698 1754 2135 2971 6331 1502 3283 1814 2510 1121 2345 1121 2345 1121 2345 12265 767 965 2120 774 1982 32971 6331 1814 2510 1121 2345 12266 2758 2952 8028 774 1982 3255 767 965 2120 720 2559 274 637 463 1456 302 864 302 864 302 864 303 1456 3049 611 SA, Bovine serum albumin; iPSCs, induced pluripotent stem cells.	Ļ	388	579	
245 521 1487 1940 981 1285 2891 3549 2811 286 2811 288 3 1754 2974 1356 3 2974 1059 2118 3 2971 6331 1502 11059 218 3 2971 1502 3293 1814 2510 1121 2345 1121 2345 2952 8028 3 717 1982 255 3 717 1982 255 3 295 274 637 3 469 3302 864 3302 864 349 611 SA, Bovine serum albumin; iPSCs, induced pluripotent stem cells.	5	241	563	
2038 2874 1487 1940 991 1285 2881 3549 21601 2688 1754 2123 974 1356 2971 6331 1502 3293 1814 2510 1121 2345 1121 2345 2952 8028 717 1982 255 767 965 2120 790 2559 274 637 302 864 3032 864 349 611	3	245	521	
1467 1940 981 1285 2881 3549 21601 2698 1754 213 974 1356 2971 6331 1502 3293 1121 2345 1121 2345 1121 204 1266 2758 2952 3028 717 1982 2052 767 965 2120 790 2559 780 2659 274 637 302 864 302 864 349 611	,	2038	2874	
981 1285 1887 2185 2881 3549 1601 2698 1754 2123 974 1356 1059 2118 2971 6331 1502 3293 11814 2510 1121 2345 1121 2345 1121 2345 12266 2758 2952 8028 7717 1982 4 255 767 905 2952 8028 3717 1982 4 255 767 905 2120 3 302 864 302 864 349 611 3A, Bovine serum albumin; IPSCs, induced pluripotent stem cells.	3	1487	1940	
1887 2185 2881 3549 1601 2698 1774 2123 974 1356 2971 6331 1502 3293 1814 2510 1121 2345 1121 2345 1121 2345 1121 2345 1141 2004 1266 2758 2952 8028 777 1982 4 255 767 300 255 767 3002 864 302 864 302 864 349 611	ľ	981	1285	
2881 3549 1601 2698 1754 2123 974 1366 1059 2118 2971 6331 1502 3293 1814 2510 1121 2345 1121 2345 1121 2345 2952 6028 717 1982 2755 767 965 2120 7900 2559 790 2559 790 2559 781 349 349 611	0	1887	2185	
1601 2698 974 1356 1059 2118 2011 6331 1502 3293 1814 2510 1121 2345 1121 2345 1141 2004 1266 2758 22952 6028 717 1982 255 767 965 2120 3 790 2559 2274 637 3 469 1456 3302 864 3319 611	1	2881	3549	
1754 2123 974 1356 1059 2118 2971 6331 1502 3293 1814 2510 1121 2345 1141 2004 1266 2758 2952 8028 717 1982 302 864 302 864 349 611	2	1601	2698	
974 1356 1059 2118 2971 6331 1502 3293 1814 2510 1121 2345 1126 2758 29252 8028 717 1982 4 255 767 637 965 2120 5 760 2952 8028 3 717 1982 4 4 255 760 2559 274 637 302 864 3032 864 3032 864 349 611	3	1754	2123	
1059 2118 2971 6331 1502 3293 1814 2510 1121 2345 1141 2004 1286 2758 2952 8028 717 1982 4 255 767 637 965 2120 790 2559 274 637 349 611	4	974	1356	
2971 6331 1502 3293 3 1814 2510 1121 2345 1 1141 2004 1266 2758 2952 8028 3 717 1982 3 717 1982 3 717 1982 3 717 1982 3 717 1982 3 717 1982 3 255 767 5 965 2120 5 790 2559 274 637 3 469 1456 0 302 864 0 349 611 SA, Bovine serum albumin; iPSCs, induced pluripotent stem cells. SA	5	1059	2118	
1502 3293 1814 2510 1121 2345 1121 2044 1266 2758 2952 8028 717 1982 2555 76 965 2120 9790 2559 274 637 302 864 3349 611	6	2971	6331	
3 1814 2510 4 1121 2345 1 1141 2004 1266 2752 8028 3 717 1982 4 255 767 5 965 2120 5 790 2559 790 2559 767 3 469 1456 3 302 864 3 349 611	7	1502	3293	
1121 2345 1141 2004 1266 2758 2952 8028 3 717 1982 255 3 965 274 637 3 469 302 864 349 611	8	1814	2510	
1141 2004 1266 2758 2952 8028 717 1982 255 767 965 2120 790 2559 274 637 302 864 302 864 349 611	9	1121	2345	
1266 2758 2952 8028 717 1982 255 767 965 2120 790 2559 274 637 302 864 302 864 349 611	0	1141	2004	
2952 8028 717 1982 255 767 965 2120 790 2559 274 637 469 1456 302 864 3032 864 349 611	1	1266	2758	
3 717 1982 4 255 767 5 965 2120 3 790 2559 2 274 637 3 469 1456 9 302 864 9 349 611 SA, Bovine serum albumin; iPSCs, induced pluripotent stem cells. Image: Stem cells.	2	2952	8028	
255 767 965 2120 790 2559 274 637 3 469 1456 3 302 864 3 349 611 SA, Bovine serum albumin; iPSCs, induced pluripotent stem cells. SA	3	717	1982	
965 2120 790 2559 274 637 3 469 302 864 349 611	4	255	767	
790 2559 274 637 8 469 302 864 9 349 611	5	965	2120	
274 637 3 469 302 864 349 611	6	790	2559	
469 1456 302 864 349 611	7	274	637	
302 864 349 611 SA, Bovine serum albumin; iPSCs, induced pluripotent stem cells. Image: Comparison of the serum cells in the serum cell	8	469	1456	
349 611 SA, Bovine serum albumin; iPSCs, induced pluripotent stem cells.	9	302	864	
SA, Bovine serum albumin; iPSCs, induced pluripotent stem cells.	0	349	611	
	SA. Bovine :	serum albumin: iPSCs. induced	pluripotent stem cells.	
	,	,		