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Potent stem cells (iPSCs) have
been transformational in biomedical
research for their ability to differen-
tiate into any cell type while retaining
the genetic information of the donor
individual, for example iPSC-derived
hepatocyte-like cells (iPSC-Heps) for
studies of nonalcoholic fatty liver dis-
ease (NAFLD).1 However, differentia-
tion protocols are time-intensive, use
costly reagents, require highly
specialized training, and can result in
Figure 1. iPSCs accumulate intracellular
iPSC line challenged for 24 hours with (0
stained with 10 mg/mL of Nile Red (pink) to
(B) Oleate- vs BSA-treated iPSCs were sta
separate aliquot of cells was left unstained
as white areas. 50-mm size bars shown. (C
oleate-treated iPSCs. Cells were stained w
sures of intracellular lipid levels in iPSCs
indicative of intracellular lipids in 30 iPSC

SSU 5.6.0 DTD �
heterogeneous cultures that are
limited in number.2 Thus, iPSC-Heps
are poorly suited for studies of ge-
netic variation that require scalability
and reproducibility. In contrast, iPSCs
exhibit self-renewal, can be cry-
opreserved, have standardized and
robust protocols available for their
generation and culturing, and are
substantially less expensive to pro-
duce. We tested whether iPSCs in their
undifferentiated state may be an
informative to model genetic factors
underlying NAFLD. NAFLD is initiated
by hepatic steatosis, often attributed to
excess synthesis, retention, or uptake
of fatty acids by the liver, where they
are stored as triglycerides within lipid
droplets. As nearly all cells can take up
fatty acids, synthesize triglycerides,
and create lipid droplets,3 we sought to
determine whether iPSCs could model
fatty acid induced lipid accumulation.

Authenicated iPSCs
(Supplementary Table 1) were
lipids when challenged with oleate. (A) Im
‒100mM) sodium oleate conjugated to b
visualize lipid droplets and Hoescht (blue)
ined with Nile Red or LipidTox Red and vi
and subjected to SRS microscopy, in whi
) Representative histogram of Nile Red flu
ith Nile Red prior to quantitation by flow
from 3 donors (n ¼ 4). (E) Geometric mea
lines treated with BSA and 100 mM oleate
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previously described.4 We confirmed
that a representative iPSC accumulates
intracellular lipids in response to 24-
hour oleate challenge in a dose
dependent manner, with lipids detec-
ted by 2 neutral lipid stains (Nile Red
and LipidTox Red) and through Simu-
lated Raman Spectroscopy, a highly
specific detection method for unla-
beled triglycerides5 (Figure 1, A‒B). To
improve quantitation accuracy, we
developed a flow cytometry-based
assay (Figure 1, C), resulting in highly
reproducible measures (Figure 1, D),
which confirmed that oleate treatment
increased intracellular lipids in cell
lines from 30 donors (2.0 ± 0.11 fold
mean ± standard error; P ¼ 4.0e-10

(Figure 1, E; Supplementary Table 2).
We next compared the degree of

oleate-induced lipid accumulation in
iPSCs from 8 donors both in their un-
differentiated state and after differen-
tiation into iPSC-Heps through a 23-
day protocol as we previously
ages taken at 100� magnification of an
ovine serum albumin (BSA). Cells were
to stain nuclei. 10-mm size bars shown.
sualized via fluorescence microscopy. A
ch unstained triglycerides are visualized
orescence values of BSA- and 100 mM
cytometry. (D) Biological replicate mea-
ns of the Nile Red fluorescence values
.
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Figure 2. The magnitude of oleate-induced intracellular lipid accumulation in undifferentiated iPSCs is correlated with
NAFLD genetic risk. Oleate-induced intracellular lipid accumulation was quantified in iPSCs from 30 donors as described in
Figure 1, and the fold change in lipid accumulation was plotted separated by the number of NAFLD risk alleles for TM6SF2
and/or PNPLA3 together (A) or separately (B). Linear regression (panel A) and analysis of variance with posthoc multiple
comparisons against the 0 allele carrier group was performed with adjusted P-values (panel B) are shown. (C) Correlation of
intracellular lipid accumulation with 4-SNP NAFLD genetic risk score.
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described.6 iPSC-Heps were authenti-
cated by expression of hepatocyte
markers and secretion of albumin into
the culture media (Supplemental
Figure 1, A‒B). There were no differ-
ences in the levels of intracellular
lipids in the isogenic iPSCs and iPSC-
Heps, either with values expressed as
absolute levels or the magnitude of
change between oleate vs BSA treated
cells (Supplemental Figure 1, C‒E).

Variants in TM6SF2 (rs58542926),
PNPLA3 (rs738409), GCKR
(rs1260326), and MBOAT7 (rs641738)
are all associated with NAFLD in mul-
tiple independent cohorts, and have
published effect sizes for their associ-
ation with hepatic fat.7 All 4 genes had
detectable expression in undifferenti-
ated iPSCs, unlike lymphoblastoid cell
lines, another patient-derived cell line
(Supplemental Figure 2). Importantly,
iPSCs carrying increasing numbers of
rs58542926 and rs738409 NAFLD risk
alleles had greater intracellular lipid
accumulation with an additive rela-
tionship observed (P ¼ 1.4e-5)
(Figure 2, A). The magnitude of this
effect was nearly identical between the
2 risk alleles, consistent with their re-
ported effect sizes7 (Figure 2, B).
Moreover, we found a significant pos-
itive correlation (r2 ¼ 0.60; P ¼ 4.8e-7)
between oleate-induced intracellular
lipid accumulation and a weighted ge-
netic risk score based on the reported
associations of TM6SF2 rs58542926,
PNPLA3 rs738409, GCKR rs1260326,
SSU 5.6.0 DTD �
and MBOAT7 rs641738 alleles with
hepatic fat7 (Figure 2, C).

Here, we show that patient-derived
iPSCs in their undifferentiated state
can be used to model genetic factors
that influence individual-level varia-
tion in fatty-acid induced lipid accu-
mulation, critical in NAFLD
pathobiology. Compared with iPSC-
Heps or liver organoids, iPSCs are
significantly more scalable, enabling
their use for genetic discovery. This
could support future use of iPSCs for
identifying high-risk individuals,
testing variation in response to treat-
ment, and informing the development
of precision medicine guidelines for
NAFLD prevention and management.
Our results also raise the possibility of
using iPSCs for investigating genetic
influences on other diseases charac-
terized by excess lipid storage.
Notably, both the TM6SF2 rs5854296
and PNPLA3 rs738409 risk variants
are thought to cause lipid accumula-
tion in hepatocytes by impairing
intracellular lipid transport and
reducing triglyceride secretion in
APOB-containing lipoprotein parti-
cles,8,9 processes that has not been
identified in iPSCs. Additional study is
needed to assess the mechanisms un-
derlying these relationships and
determine the extent to which NAFLD
relevant pathways can be modeled in
the iPSC. Lastly, these findings chal-
lenge the current paradigm of iPSC use,
which assumes that cells must be
JCMGH1052 proof � 8 August 2022 � 8:37
differentiated to be informative, high-
lighting the potential utility of undif-
ferentiated patient-derived iPSCs as a
cellular model of individual level dis-
ease risk.
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Supplementary Materials
and Methods

Post Induced Pluripotent Stem
Cell (iPSC) Donor
Demographics

Cell line donors were genotyped on
Illumina Infinium OmniExpressExome
bead chips. Thirty-five iPSC lines were
selected for this study based on their
sex, ancestry, and genetic information
(Supplementary Table 1). Because
most of the nonalcoholic fatty liver
disease (NAFLD) genetic studies have
been performed in individuals of Eu-
ropean ancestry, we used cell lines
from donors of European descent so
the effect sizes and genetic risk score
would be most accurate.

iPSC and iPSC-derived
Hepatocyte-like (iPSC-Hep)
Cell Culture

iPSCs were cultured in mTESR1
media at 37 �C at 5% CO2. iPSCs were
passaged using accutase (Stemcell
Technologies, Cat. # 07920) and media
supplemented with Y-27632 2HCl in-
hibitor (Selleckchem, Cat. # S1049).
iPSC-Heps were cultured at 37 �C and
5% CO2 in Lonza Hepatocyte Culture
Medium (HCM; Cat. # CC-3198). iPSCs
were differentiated into hepatoblasts
as previously published.1 Expression of
hepatocyte-specific markers albumin
and hepatic nuclear factor 4 alpha
(HNF4A) were confirmed by
fluorescence-activated cell sorting at
a threshold of >90% dual-positive
cells.

Intracellular Lipid Accumulation
iPSCs and iPSC-Heps were grown to

70% to 75% confluency in 6-well
plates. Cell lines were challenged with
HCM containing 0 to 100 mM oleate
conjugated to fatty acid-free (FAF)
bovine serum albumin (BSA), and all
BSA-containing supplements were
removed. A volume of FAF-BSA equiv-
alent to the oleate condition was used
as a negative control. After 24 hours,
cells were fixed with 10%
paraformaldehyde.

Flow Cytometry for
Quantification of Intracellular
Lipids

Cells were stained with Nile Red
(Sigma, Cat. # 72485) diluted to 100
mg/mL in Dulbecco’s phosphate-
buffered saline for 30 minutes, and
fluorescence was quantified using the
BD LSRFortessa. Data was analyzed
using FloJo v10.7.1. Oleate-induced in-
creases in cellular lipids were quanti-
fied as the fold change of the oleate-
treated/BSA-treated cells. Two out-
liers were identified using the ROUT
test. Because they were from the same
batch of samples, all 5 samples in the
batch were excluded from the analyses,
resulting in a sample size of n ¼ 30.
Paired Student t tests were used to
identify statistically significant differ-
ences between BSA- and oleate-treated
cells. Linear regression was used to
evaluate the correlation between vari-
ation in the magnitude of oleate-
induced increase in intracellular lipid
accumulation and the number of
TM6SF2 rs58542926 and/or PNPLA3
rs738409 risk alleles. All statistical
analyses were performed using JMP
Pro 16.0.0 and GraphPad Prism
version 9.1.0.

Calculation of a Weighted
NAFLD Genetic Risk Score

A 4 single nucleotide poly-
morphism (SNP)-weighted genetic risk
score (GRS) was calculated for each
iPSC line using the following variants:
PNPLA3 rs738409, TM6SF2
rs58542926, GCKR rs1260326, and
MBOAT7 rs641738 using previously
estimated effect sizes for their re-
lationships with hepatic fat.2 The DHS
coefficients used were 0.2653 for each
rs738409 G allele, 0.2711 for each
rs58542926 T allele, 0.0649 for each
rs1260326 T allele, and 0.0575 for
each rs641738 T allele. The GRS was
calculated as the sum of the product of
the weights for each SNP and the
numbers of each risk allele present.

Fluorescence Microscopy
Cells were stained with Nile Red

(100 mg/mL) and Hoescht 33342 (5

mg/mL) for 30 minutes (ThermoFisher,
Cat. # H3570). Images were captured
on a Keyence BZX-700 microscope at
100� and 20� magnification using
phase contrast and widefield fluores-
cence microscopy. Fiji was used to
quantify both nuclei and lipid droplet
counts as well as the integrated in-
tensity of lipid droplets in 100�
images.

Stimulated Raman
Spectroscopy (SRS)
Microscopy

The dual output of a commercial
oscillator/optical parametric oscillator
(Insight DSþ, Spectra-Physics) was
used for SRS imaging. The output of
the optical parametric oscillator was
set to 802 nm corresponding to a
wavenumber of w2850 cm-1 with the
fundamental at 1040 nm used as the
Stokes field. The fundamental was
amplitude modulated at 10.28 MHz
using a resonant EOM (EO-AM-R-C2,
Thorlabs) and a Glan-laser polarizer
(Thorlabs). The 802 and 1040 nm
beams were combined on a 1000 nm
short-pass dichroic mirror (Thorlabs)
and fed into a commercial inverted
scanning microscope (Olympus IX83-
FV1200). Temporal coincidence of the
pulses was controlled using a variable
delay stage placed on the 802 nm arm
(FCL200, Newport). A 60� water-
immersion objective (1.2 NA) was
used for imaging (UPLSAPO60XWIR,
Olympus), with a 1.4 NA oil-immersion
condenser (CSC1003, Thorlabs) used
to collect the light sent to the detector.
The Stokes beam was blocked using a
1000 nm shortpass filter (Thorlabs),
and the 802 nm pump was detected on
a photodiode reverse biased at 61.425
V. The output of the photodiode was
demodulated by a lock-in amplifier
(H2FLI, Zurich Instruments) for image
formation. All images were acquired at
512 � 512 pixels per field of view,
using a pixel dwell time of 10 ms, and a
lock-in time constant of 3 ms. The
average power of both the 802 and
1040 nm lines was 10 mW. Intracel-
lular lipid content was measured as the
integrated SRS signal at 2850 cm-1,
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which primarily corresponds to CH2

stretching in lipid molecules. To
calculate average cellular lipid content,
the images were pseudo-flatfield cor-
rected using a Gaussian convolved
version of the image as the flatfield
(with radius equal to 150 pixels). A
thresholded cellular image for each
field of view was then produced by
first lowpass filtering the image, and
then performing an adaptive local his-
togram equalization (with radius of 15
pixels).

RNA Sequencing Analysis
Isolated RNA was prepared into

polyA-selected, strand-specific
sequencing libraries for 100 bp paired-

end sequencing at the Northwest Ge-
nomics Center. Gene expression levels
in iPSCs were compared with previ-
ously generated RNAseq data,
including 426 lymphoblastoid cell
lines,3,4 primary human hepatocytes
from 4 donors (Supplementary Ta-
ble 3), and 10 biological replicates
HepG2. GTEx V8 liver TPM expression
levels were downloaded via the GTEx
portal for comparison. Sequence tran-
script counts per million (TPM) were
calculated by dividing the number of
sequence fragments aligning to the
gene by the gene length in kilobases
(FPK). The sum of the FPK for each
gene across all samples was then
divided by one million to create a

scaling factor (FPK/million). The FPK
for each sample and gene were then
divided by the scaling factor for that
gene to create the final TPM value.
These values were graphed using
Graphpad prism 9.1.0 and shown as
Log10 TPM.
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Supplementary Figure 1.
Authentication of iPSC-Heps
and comparison with iPSCs.
(A) Brightfield and fluores-
cence microscopy of iPSCs
during differentiation into
iPSC-Heps with immunohisto-
chemical evaluation of endo-
derm (SOX17, FOX2A), and
hepatocyte markers (HNFa,
alpha fetal protein [AFP], al-
bumin [ALB]) during various
stages of differentiation. (B)
Albumin in the culture media of
iPSCs during differentiation
into iHeps and compared with
the human hepatoma cell line
HepG2. Oncostatin M day 1 to
day 5 represent the stage of
hepatoblast formation and dif-
ferentiation into iPSC-Heps at
day 6 after addition of oncos-
tatin M (or day 23 after initi-
ating the differentiation
protocol). Values shown are
mean ± standard error of the
mean. (C) Oleate-induced
intracellular lipids were
imaged at 20� magnification
in undifferentiated iPSCs and
iPSC-Heps as described in
Figure 1. 50-mm size bars
shown. (D) iPSC-Heps were
treated with BSA or 100 mM
oleate (n ¼ 8), and Nile Red
fluorescence was quantified by
fluorescence-activated cell
sorting. **P ¼ .0018, paired t
test. (E) Intracellular lipid
accumulation was quantified in
iPSCs from 8 unique donors
before and after differentiation
into iPSC-Heps, and after
treatment with 100 mM oleate
or bovine serum albumen
control.
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Supplementary Figure 2.
Undifferentiated iPSCs
express genes identified
by NAFLD genetic asso-
ciation analyses. PolyA-
selected whole tran-
scriptome sequencing was
performed in GTEx liver
(n ¼ 226), primary human
hepatocytes (n ¼ 4), hu-
man iPSCs (n ¼ 48), the
human hepatoma HepG2
cell line (n ¼ 10), and hu-
man lymphoblastoid cell
lines (n ¼ 426), and
TM6SF2, PNPLA3, GCKR,
and MBOAT7 transcript
levels were quantified as
transcripts per million. The
y-axis is scaled as Log10.
Primary hepatocytes were
obtained from 3 female
and 1 male donor between
the ages of 49 and 75
years with body mass in-
dex ranging from 22.5 to
24.3 kg/m2.
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Supplementary Table 1.Demographic and Genetic Characteristics of iPSC Donors

iPSC line Sex Ancestry
PNPLA3 rs738409

# of G alleles
TM6SF2 rs58542926

# of T alleles 4 SNP-weighted GRS

1 F European 0 1 0.451

2 M European 0 1 0.329

3 F European 0 1 0.394

4 M European 0 0 0.058

5 M European 0 0 0.122

6 M European 0 0 0.187

7 F European 0 0 0.122

8 F European 0 0 0.065

9 F European 0 0 0.000

10 F European 0 0 0.122

11 F European 0 0 0.180

12 M European 0 0 0.115

13 F European 0 0 0.000

14 F European 0 0 0.122

15 M European 0 0 0.130

16 F European 1 0 0.395

17 F European 1 0 0.388

18 F European 1 0 0.323

19 M European 1 0 0.453

20 M European 1 0 0.265

21 F European 1 1 0.659

22 M European 1 1 0.594

23 M European 1 1 0.666

24 F European 1 1 0.536

25 F European 2 0 0.653

26 M European 2 0 0.711

27 F European 2 0 0.653

28 M European 2 0 0.653

29 M European 2 0 0.711

30 M European 2 0 0.588

Note: Informed consent was obtained from all study subjects for the creation of induced pluripotent stem cells, and studies
were performed with institutional review board approval of both Kaiser Permanente Northern California and the University of
California San Francisco Benioff Children’s Hospitals. Donor individuals were genotyped using Illumina Infinium OmniEx-
pressExome bead chips. A 4 SNP-weighted GRS was calculated for each iPSC line using the following variants: PNPLA3
rs738409, TM6SF2 rs58542926, GCKR rs1260326, and MBOAT7 rs641738.
F, Female; GRS, genetic risk score; iPSCs, induced pluripotent stem cells; M, male; SNP, single nucleotide polymorphism.
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Supplementary Table 2.Flow Cytometry Values of iPSCs Post Oleate Challenge
and Nile Red Staining

iPSC line BSA geometric mean 100 mM oleate geometric mean

1 1556 2880

2 661 1718

3 185 425

4 388 579

5 241 563

6 245 521

7 2038 2874

8 1487 1940

9 981 1285

10 1887 2185

11 2881 3549

12 1601 2698

13 1754 2123

14 974 1356

15 1059 2118

16 2971 6331

17 1502 3293

18 1814 2510

19 1121 2345

20 1141 2004

21 1266 2758

22 2952 8028

23 717 1982

24 255 767

25 965 2120

26 790 2559

27 274 637

28 469 1456

29 302 864

30 349 611

BSA, Bovine serum albumin; iPSCs, induced pluripotent stem cells.
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