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ABSTRACT: DNA-wrapped single walled carbon nanotube (SWNT)
conjugates have distinct optical properties leading to their use in biosensing
and imaging applications. A critical limitation in the development of DNA−
SWNT sensors is the current inability to predict unique DNA sequences that
confer a strong analyte-specific optical response to these sensors. Here, near-
infrared (nIR) fluorescence response data sets for ∼100 DNA−SWNT
conjugates, narrowed down by a selective evolution protocol starting from a
pool of ∼1010 unique DNA−SWNT candidates, are used to train machine
learning (ML) models to predict DNA sequences with strong optical
response to neurotransmitter serotonin. First, classifier models based on
convolutional neural networks (CNN) are trained on sequence features to classify DNA ligands as either high response or low
response to serotonin. Second, support vector machine (SVM) regression models are trained to predict relative optical
response values for DNA sequences. Finally, we demonstrate with validation experiments that integrating the predictions of
ensembles of the highest quality neural network classifiers (convolutional or artificial) and SVM regression models leads to the
best predictions of both high and low response sequences. With our ML approaches, we discovered five DNA−SWNT sensors
with higher fluorescence intensity response to serotonin than obtained previously. Overall, the explored ML approaches,
shown to predict useful DNA sequences, can be used for discovery of DNA-based sensors and nanobiotechnologies.
KEYWORDS: single-walled carbon nanotubes, DNA−nanotube conjugates, optical sensors, serotonin, machine learning

INTRODUCTION

Single walled carbon nanotubes (SWNT) are constituent parts
of many hybrid material systems designed for nanotechnology
applications, such as sensing, biological imaging, electronics,
and gene delivery.1−10 Noncovalent polymer adsorption is a
widely used method to functionalize SWNTs while also
solubilizing them in aqueous environments by forming a
“corona phase” on the SWNT surface. A variety of polymers
have been used for SWNT functionalization, including nucleic
acids, peptides, surfactants, lipids, and peptoids.11−20 Among
those, nucleic acid functionalized SWNT conjugates are the
most ubiquitous and arguably the most technologically useful
in important applications, including optical sensing of
biologically important analytes,1,2 polynucleotide (DNA/
RNA) delivery for genetic transformation applications,7,21

and for chirality sorting of multichirality SWNT samples into
chirality-pure constituents.22−27

DNA sequence plays an essential role in DNA−SWNT
conjugates that optically sense analytes and is solely
responsible for analyte-specific molecular recognition. An

effective sequence must simultaneously bind with high affinity
to the analyte and the underlying SWNT surface to result in a
significant selective change of the SWNT near-infrared (nIR)
fluorescence response, ΔF/F, in the presence of the target
analyte. Prior work has found that as little as a single
nucleotide substitution in a DNA sequence can abolish sensor
response to a target analyte.2

Most DNA−SWNT-based sensors are generated using
either pre-existing molecular recognition elements28,29 or
low-throughput screening approaches, in which fewer than
100 DNA sequences are screened for fluorescence modulation
by target analytes.2,30 The latter approach, characterized by
random successful parameter hits, relies upon the fortuitous
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discovery of candidate sensors. While this approach can be
useful for starting new directions of research, it is not a
sustainable method for optimizing identified sensing tech-
nologies or to develop sensors for elusive analytes. In a recent
advance, we started addressing this challenge: we developed a
method (called SELEC) by which to “evolve” ssDNA−SWNT-
based molecular recognition toward an analyte of interest, with
selectivity that increases with each round of evolution.31 In this
approach, ∼1010 unique ssDNA strands can be evolved for
molecular recognition of target analytes while still adsorbed to
the surface of a nanomaterial.
The data sets generated by the SELEC approach contain

rich information on DNA sequences that confer analyte
selectivity and SWNT binding affinity. Herein, we leverage
these unique data sets to guide our selection of a data set of
∼100 DNA−SWNT conjugates for which we determine ΔF/F
nIR fluorescence response to the chosen analyte. The resulting
data set is used to develop machine learning (ML) models that
learn and make predictions of useful ssDNA sequences, which
previously eluded experimental validation, that bind to and
optically sense the chosen analyte on SWNT surfaces. The
model predictions are examined in validation experiments, the
results of which are then used to retrain models and predict
DNA sequences that produce higher ΔF/F response to the
target analyte. While our approach could be applied to other

analytes, we here demonstrate our approach for serotonin (5-
hydroxytryptamine, 5-HT), a neurotransmitter with many roles
in the central nervous system32 and outside the brain.33 As
serotonin biosensing is of great importance, many recent
efforts have been devoted to its sensor development.28,31,34,35

RESULTS AND DISCUSSION
Classifying DNA Sequences in DNA−SWNT Conju-

gates Based on Their Optical Response to Serotonin.
We first sought to train and test classifier models for predicting
18-nucleotide (nt) long ssDNA sequences with a high relative
nIR fluorescence response to serotonin following conjugation
to SWNT. First, models were trained on an initial data set of
96 unique ssDNA sequences, identified by previous SELEC
experiments. This initial data set was selected from a library of
all possible ∼1010 18-nt ssDNA sequences that competitively
bind to either SWNT (control samples) or SWNT in the
presence of serotonin (experimental samples).31 The SELEC
protocol, schematically shown in Figure 1a, was performed for
several selection rounds, each of which provided data sets of
selected DNA sequences and their abundance. The 96
sequences, primarily the most abundant sequences from the
experimental and control groups from SELEC rounds 3 to 6,
were chosen for follow-up serotonin response spectroscopic
measurements, thus forming the initial data set for model

Figure 1. Approach to learning which DNA sequences in DNA−SWNT conjugates provide high response to serotonin. (a) A selective
evolution protocol, SELEC, performed for up to six rounds, experimentally identified ssDNAs with high affinity for SWNTs and, separately,
SWNTs in the presence of serotonin. Some of the high-affinity ssDNAs are selected for follow-up fluorescence emission spectroscopy
experiments of ssDNA−SWNT conjugates before and after the addition of 100 μM of serotonin. (b) The optical response, ΔF/F, of 96
unique ssDNA-SWNT conjugates to 100 μM serotonin; the data also include duplicate measurements for four of the sequences. (c) The
main computational approach. DNA sequences are preprocessed into either binary psv1 format or a simple binary array. The sequences are
split in two classes of optical response, according to ΔF/F-based threshold values. The sequences and their ΔF/F values are used to train
classification and regression models. The models of highest quality are used to predict other sequences with high and low response to
serotonin, which are tested in validation experiments. The obtained experimental data are then used to generate further models.
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training. nIR fluorescence emission was measured for those 96
unique ssDNA−SWNT conjugates before and after the
addition of 100 μM serotonin; these data were already
reported in ref 31 and are provided in Figure 1b and
Supporting Information (SI), Figure S9 and Table S1. The
response of conjugates to serotonin was calculated from the
fluorescence emission spectra for the (8,6) chirality dominant
peak (∼1195 nm center wavelength) as ΔF/F = (Fa − F)/F,
where F is the fluorescence signal before addition of serotonin
and Fa is the fluorescence signal after the addition of serotonin
(Figure 1a). The measured ΔF/F values for sequences in the
initial data set range from 0.2 to 1.9. The initial data set, with
sequences colored according to the SELEC group they belong
to (experimental, control, or neither), is also shown in SI,
Figure S9.
Using the approach in Figure 1c, convolutional neural

network (CNN) classifier models were trained and tested on
the obtained data set of 96 DNA sequences and their
corresponding ΔF/F values (SI, Table S1, Figure 1b). The
data set was split into two classes of sequences based on the
response to serotonin, namely, class 1 sequences with a strong
response to serotonin (ΔF/F threshold t1 > 0.9) and class 0
sequences with a low response to serotonin (variable threshold
ΔF/F values of t0 < 0.85, 0.8, 0.7, 0.6, and 0.5). The thresholds
were selected to examine how we can best identify sequences
that lead to DNA−SWNT conjugates with either an
exceptionally high response or an exceptionally low response
to target analyte, which is the information that one would
ideally want for practical applications of DNA−SWNT sensors.
The choice of threshold t1 > 0.9 leads to class 1 containing
32% of sequences from the total data set (31 out of 96
sequences). The variable threshold t0 allows examining the
effects of data set size and balance on ML model quality and
stability: larger thresholds should lead to more sequences in
class 0, imbalanced classes, more stable models, and learning of

sequences with intermediate response to serotonin, while lower
thresholds should lead to fewer data points in class 0, more
balanced classes, less stable models, and learning of sequences
with very low response to serotonin. Input for CNN models
consisted of ssDNA sequences, converted to position specific
vector (psv1) form with binary values (example shown in SI,
Figure S1). The output of trained CNN models are
probabilities for the input sequences to belong to class 0 and
class 1 (independent).
Quality parameters for one of the best CNN models trained

on the initial data set, model M1, are provided in Figure 2a. For
M1, values of the area under the receiver operating curve
(AUC) were 0.59 for predicting class 0 sequences and 0.64 for
predicting class 1 sequences, while precision/recall were 0.81/
0.5 and 0.76/0.57 for predicting class 0 and class 1 ssDNA
sequences, respectively. Models were sensitive to removal of
several sequences from input, especially class 1 sequences, as
observed when seeking a high-quality CNN model trained on a
truncated initial data set of only 93 data points. Quality
parameters for a representative model M1B, prepared with 93
data points from the initial data set, are reported in SI, Figure
S2. Overall, while the CNN approach is giving good but not
exceptional quality parameters, we decided to use it for
classifying DNA sequences because several other ML methods
tested, including AdaBoost, logistic regression, support vector
classification, and random forest, led to unusable models.
These latter methods consistently led to class 0 and class 1
probabilities of 0.5 ± 0.2, indicating a poor differentiation
between sequences with high and low response to serotonin
for models trained with these methods (SI, Table S2).
Separately, we choose psv1 encoding of sequences over other
types of encoding reported by others36 that we also tested
herein. Specifically, we found that term frequency vectors with
sequence patterns 1, 2, 3, and 4 nucleotides in length (tfv1, tfv2,
tfv3, and tfv4) frequently resulted in zero values in confusion

Figure 2. Performance of a representative CNN model trained on the initial data set. (a) Evaluation of a representative CNN M1 model
trained on the initial data set, using t1 > 0.9 and t0 < 0.85. (b) The optical response, ΔF/F, of ssDNA−SWNT conjugates to 100 μM
serotonin, obtained for 20 other ssDNA sequences, predicted by model M1 to have high response (labeled positive) and low response
(labeled negative) to serotonin. Sequences with ΔF/F values exceeding 1.9, the highest values in the initial data set, are marked with green
circles. (c) Percentage of sequences in R6E, R5E, R6C, and R5C SELEC data sets predicted by model M1 to be high responders to serotonin.
The percentage is calculated for the first 300 SELEC data sequences in the given experimental/control data set that are not in the
corresponding control/experimental data set.
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matrices for testing sequences (simultaneous zero values for
true positives and false positives). Null values in confusion
matrices were noted in 90% of models for tfv1, 100% of models
for tfv2 and tfv3, and 82% of models for tfv4 encoding (SI,
Table S3).
We next examined the predictions of model M1 for the most

abundant DNAs from control and experimental SELEC data
sets. We used model M1 to classify the 300 most abundant
DNA sequences from round 6 and round 5 experimental
(R6E/R5E) and control (R6C/R5C) SELEC data sets,
excluding any overlapping sequences found in both exper-
imental and control data sets from the same rounds. Model M1
predicts 41.7%/37.7% of R6E/R5E sequences and 26%/34%
of R6C/R5C sequences to have high ΔF/F response to
serotonin (Figure 2c). Because experimental data set
sequences were selected based on their high affinity for
SWNTs in the presence of serotonin, in contrast to the control
data set sequences, our expectations were that experimental
data sets contain more of the serotonin responsive sequences.
These expectations agree with the predictions reported in
Figure 2c.
To test the quality of model M1 predictions, 20 DNA

sequences were selected from the 300 most abundant
sequences in the R6E SELEC data set for experimental
validation measurements. According to model M1 probabilities
for these sequences to be in classes 0 or 1, 15 of the sequences
are predicted to have high response to serotonin, while the
remaining 5 are predicted to have low response to serotonin
(SI, Table S4). Figure 2b and SI, Table S4, provide the
experimentally measured ΔF/F values for the selected DNA
sequences. Interestingly, 12 out of 15 predicted high-response
sequences had ΔF/F values greater than the class 1 threshold,
t1 > 0.9 (80%, obtained from 12 out of 15 sequences).
Furthermore, the validation experiments identified two
sequences with ΔF/F values of 2.1 and 2.7, and thus a higher
response to serotonin than observed for all the sequences
within the initial data set. These sequences correspond to

ID#90 (8 reads, ΔF/F = 2.1) and ID#115 (7 reads, ΔF/F =
2.7), based on the read numbers in the R6E data set.
Separately, 3 out of 5 predicted low-response sequences
measured ΔF/F values lower than the class 0 threshold, t0 <
0.85. Overall, predicted probability and experimental ΔF/F
values do not have a statistically significant correlation (SI,
Figure S3).

Performance of Single CNN Models Trained on Our
Expanded Data Set. To examine if inclusion of additional
experimental data points can produce more predictive models,
we trained a second representative CNN model M2 on the
expanded data set of 113 sequences, which combined the
initial data set (singly measured sequences in Figure 1b and SI,
Table S1) and the additional experimental data from the first
set of validation experiments (Figure 2b and SI, Table S4). A
representative model M2 has an accuracy of 0.64, AUC values
of 0.71 for predicting class 0 sequences, and 0.75 for predicting
class 1 sequences, while precision/recall are 0.77/0.59 and
0.53/0.73 for predicting class 0 and class 1 ssDNA sequences,
respectively. In addition to improved AUC values, the M2
model has significantly improved ROC curves in comparison
to models M1 and M1B (Figure 3b, and SI, Figure S2).
To test the quality of model M2 predictions, 40 DNA

sequences were selected from 280 untested most abundant
sequences in the R6E data set for the next round of
experimental validation measurements. Of those 40 DNA
sequences, half were predicted by M2 to have a low response
(labeled as negative) and the other half were predicted to have
a high response (labeled as positive) (SI, Figure S4). Figure 3c,
and SI, Table S4 provide the experimentally measured ΔF/F
values for the selected DNA sequences. Model M2 over-
estimates false positive sequences because only 7 out of 20
sequences (35%) predicted to have high response to serotonin
actually have ΔF/F greater than the class 1 threshold of t1 =
0.9, while the remaining 13 out of 20 sequences (65%) have
ΔF/F < 0.9. Single models such as M2 could potentially be
predicting sequences with responses similar to randomly

Figure 3. Performance of CNN models using the expanded data set. (a) Evaluation of a representative CNN M2 model trained on the
expanded data set, using t1 > 0.9 and t0 < 0.85. (b) ROC curves of model M2 when predicting class 0 and class 1 sequences. (c) The optical
response ΔF/F of ssDNA−SWNT conjugates to 100 μM serotonin, obtained for 40 ssDNA sequences. Sequences with ΔF/F values
exceeding 1.9, the highest value in the initial data set, are marked with green circles.
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chosen sequences. Of practical relevance, model M2 predicted
two previously undiscovered sequences from the R6E
evolution group with a very strong response to serotonin,
with ΔF/F values of 2.5 and 2.9. Interestingly, these sequences
correspond to ID#264 (6 reads, ΔF/F = 2.5) and ID#156 (7
reads, ΔF/F = 2.9), based on the read numbers in the R6E
evolution group. Separately, while all the sequences predicted
to have a low response to serotonin had ΔF/F < 1.3, only 9 out
of 20 sequences (45%) have ΔF/F values smaller than the class
0 threshold of t0 = 0.85.
Predicting High-Response DNAs from Combined

Classification and Regression Models. When training
models M1 and M2, we noted their stochastic behavior and
dependence on the random state variable (different training/
testing data set splits) selected during the training procedure.
To characterize the stochasticity of these models trained on
our sparse data sets of ∼100 sequences, we next analyzed their
accuracy and f1 scores. The analysis was performed on 200
CNN models trained on the expanded data set using different
random state variables and several t0 threshold values (0.5, 0.6,
0.7, 0.8, 0.85). Distributions of these models’ accuracies and f1

scores, shown in Figure 4a,b, and SI, Figure S5, range from 0.4
to 0.93 and 0.2 to 0.9, respectively. While these distributions
span a wide range, most models have accuracies and f1 scores
higher than 0.5 and should thus be predictive. Furthermore,
more than half of the models in Figure 4b have accuracy and f1

scores higher than 0.6. Interestingly, the predictions of high
response sequences are of higher quality for lower thresholds t0
(SI, Figure S5 and Table S6). Model stochasticity decreases
and model stability increases once the data sets contain 500 or
more sequences per class (Figure 4c, input sequences selected
from SELEC data sets).
With the objective of predicting DNA sequences with the

highest ΔF/F values, we next trained regression models, which
predict ΔF/F values based on the DNA sequence input. The
regression models were trained using the support vector
machine (SVM) regression algorithm with radial basis function
(RBF) and sigmoid kernels, based on successful applications of
these algorithms for sequence input.37 One of the best SVM
RBF regression models, trained on the expanded data set with
sequences with ΔF/F > 0.9 and ΔF/F < 0.6, is shown in Figure
5a. There is a high correlation between ΔF/F values of test

Figure 4. Stochasticity of CNN models. (a) Distribution of accuracy values for 200 CNN models with psv1 input, obtained using different
random states for several t0 values. (b) Distribution of f1 score values for 200 CNN models, obtained using different random states for t0 =
0.7. (c) Dependence of model stability on data set size. AUC values for nine CNN models trained on 100, 200, 500, and 1000 sequences in
each of two classes, extracted from R6C (class 0) and R6E (class 1) SELEC data sets. Each model has a different random state variable.

Figure 5. SVM regression models for predicting ΔF/F values of ssDNA−SWNT conjugates. (a) Comparison of experimentally measured
ΔF/F values and ΔF/F values predicted by one of the best SVM RBF regression models, trained using the expanded data set and thresholds
t1 > 0.9 and t0 < 0.6 for one selected random state variable. (b) Distribution of r2 values for 200 SVM RBF models, obtained using different
random state variables. (c) Distribution of r2 values for 200 SVM sigmoid models, obtained using different random state variables.
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sequences obtained experimentally and those predicted by this
SVM model, with r2 = 0.448 and the Pearson coefficient rPearson
= 0.67 (p-value = 0.001). However, as with classification
models, the quality of regression models also depends on the
random state variable. This dependence is noted in
distributions of r2 values for 200 models obtained with SVM
RBF and SVM sigmoid methods, different random state
variables, and different t0 values (Figure 5b,c). For both SVM
RBF and SVM sigmoid methods, r2 values range from negative
values to 0.5, with SVM RBF models being on average of
higher quality than SVM sigmoid models.
Given the large number of high-quality classification and

regression models obtained, we next assessed whether
combining the predictions of these models could be used to
determine DNA sequences with high and low response to
serotonin. For this purpose, CNN models were trained on
input data with thresholds t1 = 0.9 and t0 = 0.5 or 0.6, which
resulted in f10 and f11 > 0.6. These were next used to predict
high and low response sequences from a set of 3000 most
abundant previously untested R6E sequences. Separately, the
best regression models with r2 > 0.45, trained using the
expanded data set and sequences within thresholds t1 > 0.9 and
t0 < 0.5, were used to predicted ΔF/F values for the same 3000
sequences. After ranking the sequences according to their
regression-predicted ΔF/F values, we extracted the top 10
sequences that are also classified as high response with the

CNN models by having consistently high/low probabilities to
be in class 1/class 0 (Figure 6a). For comparison, we also
extracted the bottom 10 ranked sequences, which are also
classified as low responders to serotonin based on having
consistently low/high probabilities to be in class 1/class 0
(Figure 6a). The probabilities of these 20 sequences to be in
class 1/class 0 were also determined by the ensemble of
multilayer perceptron artificial neural network (MLP-ANN)
models, shown in SI, Figure S8; the ensemble included the
models trained on input data with thresholds t1 = 0.9 and t0 =
0.7, which have f10 and f11 scores greater than 0.6. The
probabilities obtained from the MLP-ANN models (SI, Figure
S8) closely followed the trends of probabilities from the CNN
models (Figure 6a). The performance of the above top 10 and
bottom 10 sequences, labeled as positive and negative, was
then examined experimentally (Figure 6b, and SI, Table S7).
Six out of 10 positive sequences (60%) had ΔF/F responses
greater than the class 1 threshold of t1 = 0.9, and one of them
had ΔF/F = 2.1 (SI, Figure S6), exceeding the highest value in
the initial data set (1.9). Furthermore, 9 out of 10 negative
sequences (90%) had ΔF/F response smaller than the class 1
threshold of t1 = 0.9. There is a statistically significant
correlation between experimentally measured and predicted
ΔF/F values (Figure 6c), with Pearson correlation coefficient
of rPearson = 0.5 and p-value of 0.02.

Figure 6. Predicting DNA sequence response to serotonin from multiple high-quality classification and regression models. (a) Probabilities
of 20 DNA sequences to be high response (class 1) or low response (class 0) to serotonin; these sequences were selected based on
predictions of multiple high-quality classification and regression models, as described in the text. (b) The optical response, ΔF/F, of
ssDNA−SWNT conjugates to 100 μM serotonin, obtained for the same 20 ssDNA sequences. The sequence with ΔF/F value exceeding 1.9,
the highest value in the initial data set, is marked with a green circle. (c) Comparison of experimentally measured and predicted ΔF/F values
for the same 20 ssDNA sequences.
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CONCLUSIONS
In this work, we apply machine learning methods toward
discovery of DNA−SWNT sensors for serotonin with high nIR
fluorescence response to serotonin. In prior sensor design
efforts, we experimentally tested the serotonin response of 96
DNA−SWNT sensors, which were chosen by the abundance
(read numbers in library) of each DNA sequence in the
experimental and control libraries from SELEC experiments.
This previous selection method assumes the best predictor of
sensor sensitivity and selectivity is the sequence abundance,
which excludes the characterization of low abundance DNA
sequences. Here, we demonstrate that ML models can improve
on this abundance-based selection. Specifically, ML models can
autonomously learn the correlation between DNA sequences
and fluorescence responses to analytes and thus assist and
improve the selection of better sensor candidates. Choosing
the abundant sequences from SELEC experiments increases
the chance that the initial data set for ML model training will
contain a large proportion of high response sequences, which is
less likely to be obtained for a data set of completely randomly
chosen sequences.
ML models can learn correlations from data sets of already

experimentally tested sequences and predict promising DNA
sequences. After testing multiple ML methods, we find that
convolutional neural network classifier models provide the
most meaningful results when trained on sparse data sets of
∼100 DNA sequences, a size typical for sensor search efforts.
At first, we train and test two single CNN classifier models and
use them to predict high response DNA sequences for
experimental validation. Even though the prediction accuracies
calculated from testing data differ from the accuracies
measured in experiments, these models still predicted multiple
DNA sequences with higher response to serotonin than those
previously achieved experimentally. Furthermore, we trained
and tested regression models on DNA sequence input to
predict the relative nIR fluorescence response of these
sequences.
Through analyses of model quality parameters for multiple

models obtained with different training/testing data splitting,
we show that both classification and regression models trained
on our sparse data sets are stochastic. However, the majority of
models are predictive, because most models have accuracies
greater than 50%. Further analyses of model stochasticity
dependence on data set size indicate that model stability can
be achieved with data sets of 500 molecules per class. Because
obtaining such large data sets in experiments is difficult, we
instead explore integrating the predictions of multiple highest
quality artificial or convolutional neural network classifiers and
SVM regression models, inspired by model ensembling
approaches,38 and demonstrate an effective increase in the
success of this ML approach. We experimentally validate that
our integrated approach leads to 60% correct predictions for
high responding sequences and 90% correct predictions for

low responding sequences, supporting the utility of our
method for predicting promising DNA sequences and
accelerating sensor discovery. Separately, we show that a
simpler principal component analysis (PCA) approach appears
to be predictive in analysis plots but exhibits a poor correlation
between predictions and validation experiments (SI, Figure
S7), in contrast to the successful artificial and convolutional
neural network classifiers and SVM regression models.
Furthermore, many sequence patterns are reported in high-
response sequences, but most have low abundance (SI, Table
S8), further confirming the benefit of using ML models when
making predictions of high response sequences from existing
experimental data sets.
Overall, our ML approaches led to discovery of five

serotonin DNA−SWNT sensors, identified in Table 1.
Importantly, these sensors all had higher response than sensors
previously identified experimentally using only manual screen-
ing of the highest-abundance sequences in the R6E SELEC
library (ΔF/F = 1.9). Furthermore, the ability to predict DNA
sequences that do not respond to serotonin (or any analyte of
interest such as interfering agents) with our models is also
important for sensor design. Taken together, our results
suggest ML approaches can rapidly identify DNA sequences
that are great responders for the target analyte and could
significantly expedite the development of technologies depend-
ent on DNA−SWNT conjugates, including biosensors,
bioelectronics, and chirality separation of SWNTs.

EXPERIMENTAL METHODS
Data Set Encoding and ML Models. Data sets used to train and

test the initial ML models consisted of ssDNA sequences and their
corresponding ΔF/F values, obtained in experiments reported and
described in ref 31. This data set is also listed in SI, Table S1. ssDNAs
consisted of 18-nt variable segment flanked by two C6-mers from each
side. Sequences of 18-nt variable segments of ssDNAs were
considered as input data for our models. Several encodings of input
data were considered, including position specific vectors (1-gram,
labeled as psv1 and shown in SI, Figure S1) and term frequency
vectors (1-, 2-, 3-, or 4-gram, labeled as tfv1, tfv2, tfv3, and tfv4 and
described in SI, Table S3). The data set from SI, Table S1 was split
into binary classes, where class 0 contains DNA sequences with low
response to serotonin and class 1 contains DNA sequences with high
response to serotonin. The threshold value to define class 0, t0, was
varied as a parameter (t0 < 0.85, 0.8, 0.7, 0.6, or 0.5). The threshold
value to define class 1, t1, was held fixed at t1 = 0.9. This threshold
selection leads to a reasonable balance of class sequences, as required
for model training and testing.

Performance of several ML classifier models was tested, including
AdaBoost, logistic regression, support vector classification linear, and
random forest. For these models, sequences were expressed as 1 × 72
binary arrays, obtained by sequential listing of psv1 matrix columns
into a one-dimensional array. Separately, we tested the performance of
convolutional neural network (CNN) models on psv1 and term
frequency vector input, successful in previous predictions of DNA and
RNA sequence specificities.39 All our models were trained to predict

Table 1. DNA−SWNT Sensors for Serotonin Identified in the Present Studya

sequence ΔF/F ID in R6E dateset no. of reads (sequencing)

CCCCCCAAGGCAACCAGACGTCCGCCCCCC 2.103 90 8
CCCCCCGACCCACACCAACCAGTGCCCCCC 2.713 115 7
CCCCCCAGCCCTTCACCACCAACTCCCCCC 2.917 156 7
CCCCCCAACACAAGACAACGCGTGCCCCCC 2.538 264 6
CCCCCCGACCCAAAGCCAACACCTCCCCCC 2.072 473 5

aThe ID numbers and the numbers of reads are obtained from the R6E SELEC dataset.31.
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the probability of the input sequence having high or a low response to
serotonin. ML models were trained using the Scikit-learn library, and
CNN models were constructed with Keras and TensorFlow 2 used as
backend. ML and CNN models were trained using the initial data set
(SI, Table S1). Because the best performance was observed for CNN
models with psv1 encoding, the models for extended data sets were
generated only with the CNN approach.
All of the codes for training ML classification and regression

models are freely available on GitHub (https://github.com/
vukoviclab/DNAsensor).
Evaluation Metrics. Our CNN models were trained to predict

the response of 18-nt DNA sequences to serotonin, or equivalently, to
predict these sequences’ probabilities to belong to class 0 or class 1
molecules. In these models, probabilities for sequences to belong to
class 0 and probabilities for sequences to belong to class 1 were
evaluated independently. Predicted high response sequences were
determined according to the criterion that normalized class 1
probabilities, defined as probability (class 1)/[probability (class 0)
+ probability (class 1)], are greater than 0.5.
For each prepared model, we calculated multiple metrics including

accuracy, precision, recall, f1 score, ROC curves, and areas under the
ROC curves (AUC), and monitored the number of true positives
(TP), true negatives (TN), false positives (FP), and false negatives
(FN). TP/FP values are numbers of test sequences correctly/
incorrectly predicted to have a high response to serotonin by the
models, and TN/FN values are numbers of test sequences correctly/
incorrectly predicted to have low response to serotonin by the
models. Accuracy was calculated as Ac = (TP + TN)/(TP + TN + FP
+ FN), precision was calculated as Prec = TP/(TP + FP), and recall
was calculated as R = TP/(TP + FN), and f1 score = (2Prec − R)/
(Prec + R), according to their standard definitions. For ML models,
single values of precision, recall, and f1 values were evaluated. For
CNN models, two values of precision, recall, and f1 scores were
reported, allowing the independent assessment of prediction quality
for sequences with low and high response to serotonin.
Performance of all the models was also examined with the receiver

operating characteristic (ROC) curves and the areas under ROC
curves (AUC). For each CNN model, two ROC curves and AUC
values were obtained, one reporting the prediction quality for test
sequences with low response to serotonin (AUC0) and the other
reporting the prediction quality for test sequences with high response
to serotonin (AUC1).
For most of the data sets (with defined encoding and classification

thresholds), 200 models were generated with different random states
(different training/testing data splitting). For some sets of the trained
models, we report the following evaluations related to model quality
metrics: mean, standard deviation, minimum, 25%, 50%, and 75%
percentile values, and maximum.
PCA Analysis. The 200 most abundant sequences from R6E and

R6C SELEC data sets were analyzed using principal component
analysis (PCA) within Scikit-learn library. Locations of some of the
experimentally tested sequences were then examined in the above
determined PCA space.
Motif Search. Sequences from the expanded data set (used to

train and test model M2) were split in two classes: sequences that
recognize serotonin (positive, ΔF/F > 0.9) and sequences that do not
recognize serotonin (negative, ΔF/F < 0.85). These two classes were
used to search for DNA sequence motifs associated with serotonin
recognition using MERCI software.40 In the search, minimal
occurrence frequency for positive sequences f P and the maximal
occurrence frequency for negative sequences fN were set to 3 and 0,
and the maximum motif length was set to 18.
ssDNA−SWCNT Suspension Preparation. ssDNA-function-

alized SWNT suspensions were generated with the following
protocol: 1 mg of HiPCo SWNT (NanoIntegris) was added to 0.9
mL of PBS buffer, and the solution was mixed with 100 μL of 1 mM
ssDNA. We prepared colloidal suspensions of SWNTs with the initial
96 ssDNA sequences (SI, Table S1) and all the subsequent sequences
(SI, Tables S4, S5, and S7) comprising variable 18-nt sequences
flanked by two C6-mers from each side. The resulting mixture was

bath-sonicated for 2 min and tip-sonicated for 10 min at 5 W power in
an ice bath. After sonication, the black ssDNA−SWNT suspension
was centrifuged for 30 min at 16 100g to precipitate nondispersed
SWNT, and the supernatant containing solubilized ssDNA−SWNT
was collected. The supernatant was spin-filtered with 100 kDa
MWCO centrifugal filters at 6000 rpm for 5 min with DNase-free
water to remove unbound ssDNA, and the purified solution at the top
of the filter was collected. This spin filtration to remove unbound
ssDNA was repeated three times. The ssDNA−SWNT suspension
was diluted with PBS buffer and stored at 4 °C until use. The
concentration of the ssDNA−SWNT suspension was calculated by
measuring its absorbance at 632 nm with an extinction coefficient for
SWNT of 0.036 (mg/L)−1 cm−1.

Fluorescence Response Measurement of Sensors to
Serotonin. Fluorescence spectra of 99 μL ssDNA−SWNT
suspensions (10 mg/L) in PBS were measured before and 10 s
after the addition of 1 μL of 10 mM serotonin solution for a final
serotonin concentration of 100 μM. We analyzed the fluorescence
intensity change of the (8,6) SWNT chirality peak (∼1195 nm) in
this study. ΔF/F was calculated as ΔF/F = (Fa − F)/F based on the
baseline fluorescence intensity before analyte addition (F) and the
fluorescence intensity 10 s after analyte addition for the (8,6) SWNT
chirality (∼1195 nm) (Fa). All of the values of ΔF/F for sequences in
the initial and validation data sets were obtained as a mean of
technical triplicates measurements, which were normally in high
agreement. ΔF/F readout for DNA−SWNT sensors was based on
(8,6) peak intensity rather than the integrated intensity, even though
both choices lead to the same qualitative trend. Yet, (8,6) peak is
more sensitive than the integrated intensity; for example, the ΔF/F
for E3-P6 DNA sequence (SI, Table S7) is 207% when using the
(8,6) peak and 86% when using the integrated intensity. ΔF/F values
for the initial 96 ssDNA sequences, ranging from 0 to 1.9, represent
the fluorescence response for the 96 most abundant sequences from
the experimental and control groups for SELEC rounds 3 to 6. ΔF/F
values of an additional 100 sequences, tested in validation
experiments, are reported in SI, Tables S4, S5, and S7. We note
that our data sets for building ML models do not distinguish the
response of two enantiomers in DNA-wrapped (8,6) SWNT ΔF/F
measurements. DNA sequences are classified as high response in the
experimentally obtained data sets as long as at least one of the DNA-
wrapped SWNT enantiomers has high response to serotonin.
Therefore, if the ratio of (8,6) enantiomers in the SWNT sample is
changed, DNA−SWNT samples made with the high-response
sequences could have a different ΔF/F response to serotonin.
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