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Abstract 
 Nonlinear optical imaging modalities, such as two-photon microscopy and stimulated Raman 
scattering (SRS) microscopy, make use of pulsed-laser excitation with high peak intensity that can perturb 
the native state of cells. In this study, we investigated the short and long-term effects of pulsed laser 
induced phototoxicity. We used bulk RNA sequencing, quantitative measurement of cell proliferation, 
and measurement of the generation of reactive oxygen species (ROS) to assess phototoxic effects, at 
different time scales, for a range of laser excitation settings relevant to SRS imaging. We define a range 
of laser excitation settings for which there was no significant ROS generation, differential gene 
expression, or change in proliferation rates of mouse Neuro2A cells. Changes in proliferation rate and 
ROS generation were observed under imaging conditions with an excitation intensity of over 600 
mW/µm2. Repeated imaging of the same field of view at this excitation intensity of over 600 mW/µm2 

resulted in visual damage to N2A cells.  Laser induced perturbations in live cells may impact downstream 
measurements of cell state including subsequent imaging or molecular measurements. This study provides 
guidance for imaging parameters that minimize photo-induced perturbations in SRS microscopy to ensure 
accurate interpretation of experiments with time-lapse imaging or with paired measurements of imaging 
and sequencing on the same cells. 
 
Introduction 
 
Advances in optical engineering over the past three to four decades have produced numerous new 
technologies that have revolutionized the life sciences.  Principally among these are the commercial 
availability of reliable plug-and-play lasers across a broad range of wavelengths, both in the continuous-
wave and pulsed regimes, as well as advanced scanning microscopy systems.  In response, numerous 
microscopy techniques have been developed to push the boundaries of what can be probed optically in a 
biological system.  One such set of developments include super-resolution microscopy techniques, such 
as PALM or STORM1,2,  which are used to elucidate sub-cellular organization at below the diffraction 
limit.  Perhaps most prominent among these new techniques, however, has been the proliferation of two-
photon excited fluorescence (TPEF) microscopy. TPEF microscopy has been adopted widely, particularly 
in fields such as neuroscience as it has allowed for imaging deeper into tissue due to the wavelengths used 
for excitation3.  
 Beyond TPEF microscopy, there is a growing field of other nonlinear optical microscopy 
techniques.  Nonlinear optics deals with a regime where the peak optical power becomes large enough 
that nonlinear effects become important.  Such peak power is provided by modern pulsed lasers operating 
in the picosecond to femtosecond regime which concentrate power into a very short pulse duration.  The 
nonlinear optical microscopy field has garnered a lot interest in the past decade, as the additional 
modalities it offers are in many cases label-free. In principle this means that samples can be probed 
without the introduction of additional dyes, and in many cases without fixation.  Second harmonic 
generation (SHG) imaging, for example, has been widely used to investigate structure and order in a 
number of biological systems such as the cornea and spine, and generally in tissues with a high collagen 
content4. Third harmonic generation (THG) has been used to extend some of the benefits of SHG to 
centro-symmetric materials5. 
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While SHG/THG provide label-free structural information, and TPEF provide specificity, albeit 
with a fluorescent label, there has been increasing demand for techniques which provide the advantages of 
being both label-free as SHG/THG, and specific as TPEF.  Confocal Raman imaging fills this niche quite 
well, as it provides chemical specificity in the form of vibrational signatures; however, traditional 
spontaneous Raman scattering is an inherently infrequent process requiring long exposure times.  As a 
result, many have turned to the nonlinear varieties of spontaneous Raman scattering, including coherent 
anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS).  These techniques make 
use of two pulsed lasers of chosen frequency such that the difference in their frequencies is equal to the 
frequency of a molecular vibration of interest.  Such vibrations could, for example, be CH3 stretches, 
which are most abundant in intracellular proteins.  SRS in particular has a number of advantages, namely 
that signal intensity is linear in the concentration of the molecule under investigation, and as such is more 
easily quantitative, and that an SRS spectrum is identical to a spontaneous Raman spectrum.  Both CARS 
and SRS have been used to investigate numerous systems including infiltrating tumor cells in fresh brain 
samples6 and lipid droplet formation in single cells7.Yet these studies have often avoided addressing an 
important question: what effect does the exposure to pulsed lasers have on the sample under investigation?  
This question is particularly relevant in cases where the microscopy experiment is not the end-point 
measurement, as in cases where imaging is paired with, for example, sequencing. 
 Phototoxicity is often mentioned in the context of microscopy, but is rarely thoroughly 
investigated, and often less so in the pulsed laser regime.  Even in the continuous-wave regime, visible 
laser radiation has been associated with increase in reactive oxygen species (ROS) and  loss of cell 
viability8,9. Imaging with pulsed lasers has also been associated with a decrease of cloning efficiency10 
and membrane blebbing,11 in addition to an increase in ROS and loss of cell viability12–14.  Yet despite 
these observations, and widespread acknowledgment that phototoxicity is an issue, there lacks a 
comprehensive study of how laser irradiation alters cell state, on the metabolic and transcriptomic level. 
 Given the promise of nonlinear imaging techniques, and particularly label-free ones such as SRS, 
this seems to be an important uncertainty to address.  This is particularly the case as interest continues to 
grow for paired measurements, where samples are imaged prior to an additional measurement.  Paired 
imaging and sequencing experiments on the same samples, for example, have led to numerous insights. 
Lane et al. studied the relation between the dynamics of nuclear factor κB activation and gene expression 
by paired fluorescent imaging and single-cell RNA-seq15. Recent advances provided high-throughput 
methods to combine RNA-seq and microscopy on the same cells, such as μCB-seq16 and SCOPE-Seq17. 
To accurately interpret the paired RNA-seq data given the reported phototoxic effects of laser-based 
imaging, it is important to understand the impact of laser radiation on the transcriptome. 

To address this need, this study aims to uncover the cellular response to pulsed laser excitation. 
Particularly, we investigate the effects of stimulated Raman scattering microscopy (SRS), which as a 
multi-pulse technique, often reaches some of the highest photon fluxes commonly used. We used two 
pulsed excitation pulses, as is common in SRS, and probed the effects of single pulses, relevant to all 
major nonlinear imaging techniques, as well as two-pulse excitation when the pulses are not temporally 
coincident. Measurements of reactive oxygen species generation, induced by laser excitation, along with 
quantification of cell proliferation after exposure, were used to compare to previous studies10,12. Critically, 
we tested for potential phototoxic effects in gene expression using RNA-sequencing, which allows for a 
comprehensive, transcriptome-wide assessment of potential changes caused by laser exposure.  The 
results of this study provide comprehensive guidelines for minimizing the effects of photo-toxicity in SRS 
imaging, and nonlinear imaging in general.  
   
 Methods 
 
1. Cell culture 
Neuro2A cells (N2A; UCB Cell Culture Facility) were cultured in T25 flasks using standard cell culture 
conditions for all experiments - 37 oC, 5% CO2, and complete growth medium consisting of DMEM 
(Gibco™ 10566016), 10% FBS (Avantor Seradigm 89510), and 1% penicillin-streptomycin (Gibco™ 
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15140122). Cells were grown to approximately 80-90% confluency and one day prior to each imaging 
experiment, they were resuspended and seeded into 8-well glass-bottom µ-Slide (ibidi 80827) for the 
ROS assays and into 384 glass-bottom well plates (Corning 4581) for the proliferation assays and RNA-
seq. The growth medium for the ROS assays did not contain phenol red. At the start of each experiment, 
the confluency was approximately 40% for the proliferation assays and 70% for the ROS assays and 
RNA-seq. 
 
2. Live-cell imaging and pulsed laser exposure 
The optical setup has been described previously18. The fundamental and tunable output from a 
commercially available femtosecond oscillator/OPO (Insight DS+, Spectra-Physics) was used as the 
excitation source. The OPO output was tuned to 796 nm for all measurements. The fundamental was at 
1040 nm. For single-pulse measurements, only the OPO output at 796 nm was used. For two-pulse 
measurements the output from both the fundamental and OPO were used.  Each line’s power was 
controlled through the use of a variable attenuator consisting of a half-wave plate or half-wave fresnel 
rhomb (OPO output), and a polarizer, and set to the power specified in the main text.  The inter-pulse 
delay was controlled by a delay stage (FCL200, Newport) on the tunable output line, and the two lines 
were combined on a 1000 nm short-pass dichroic mirror (Thorlabs), and fed into an inverted scanning 
microscope. (Olympus IX83-FV1200) A 20x objective with a numerical aperture of 0.75 (Olympus, 
UPLSAPO20X) was used for all measurements, and frames were acquired at 512 x 512 pixels with a 
dwell time of 2 μs per pixel.  The wavelength of 796 nm was chosen because when coincident with the 
fundamental 1040 nm line it provides the pump for a stimulated Raman interaction at a frequency of 2950 
cm-1, corresponding to CH3 stretches, largely found in proteins throughout the cell.  In addition to SRS 
imaging, to deconvolve the contribution of the stimulated Raman process from the other effects of the 
dual laser excitation, measurements were acquired at an inter-pulse delay of 50 ps, with the 796 nm pulse 
arriving first. 
 
2. ROS assay 
The N2A cells were exposed to the different settings as described in Table 1, with three replicates per 
exposure condition. The three negative control wells were not exposed. ROS generation was detected by 
CellROX™ Green reagent (Invitrogen) following the manufacturer’s protocol. The dye was diluted to 5 
µM in pre-warmed complete growth medium immediately before addition to cell culture. The growth 
medium in wells for exposure and the negative control wells was replaced by the medium with the dye in 
each well after the laser exposure for that well was completed, followed by 30 min incubation. After 
incubation, each well was washed three times with warm medium. A fluorescent image was taken in the 
GFP channel after the wash. A bright-field image of the same field of view was taken for each fluorescent 
image, so that the fluorescent increases post-exposure were normalized by the number of cells in each 
field of view. The same protocol was followed in empty wells to confirm that the laser beams did not 
react with CellROX Green dyes directly to cause any fluorescent changes. Cell boundaries were manually 
defined using the bright-field images to measure fluorescence post-exposure. The fluorescence was 
normalized to the background by manually selecting regions in the same well that did not have cells. A 
flat-field correction was also applied to each fluorscence image.  The reference for the flat-field correction 
was taken in empty wells with the same concentration of CellROX Green in warm complete medium 
under the same settings for the GFP channel. During all procedures, N2A cells were kept at 37 oC with 5% 
CO2. 
 
3. Proliferation assay 
For each condition listed in Table 1, the entire culture wells in a 384 glass-bottom well plate were 
exposed to laser excitation by dividing each well into multiple non-overlapping fields of view. The stage 
was moved during the imaging of a well to scan each field of view once with the laser, such that all the 
cells in the same well were subjected to the same laser exposure condition. On the same 384-well plates, 
three wells of negative control cells were not exposed to the laser but were otherwise subjected to the 
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same conditions. To measure the proliferation overnight with time-lapse imaging, we used IncuCyte 
ZOOM ((Essen BioScience) with a 10X objective to automatically acquire phase-contrast images while 
keeping the 384-well plates at 37 oC and 5% CO2. A phase-contrast image was taken every 30 min to 2 
hours inside the IncuCyte for each well. N2A cells in the images were segmented using an algorithm for 
segmenting cells in bright-field images from Buggenthin et al 19. Fiji was used for counting cells in the 
binary images after segmentation20. 
 
4. RNA-seq 
As in the proliferation assays, for each RNA-seq condition, the entire cell culture well in 384 glass-
bottom well plates was exposed to laser excitation, such that all the cells in the same well were subject to 
the same laser exposure. The cells were lysed 1 hour after laser exposure to allow sufficient time for 
transcriptional changes21. Three wells of unexposed cells subjected to the same conditions were lysed at 
the same time. We followed the manufacturer’s protocol for RNA extraction (Qiagen RNeasy Mini Kit) 
and library preparation (NEBNext Ultra II RNA library prep kits for Illumina). Differential gene 
expression was tested for each exposure settings against the negative controls that were subject to the 
same ambient conditions and the same library preparation protocols but with no laser excitation. A false 
discovery rate < 0.05 was used as the threshold for differential expression after adjusting for multiple 
hypothesis testing with the Benjamini-Hochberg procedure22 or with the Bonferroni correction23. The R 
package limma was used to perform this differential expression analysis.24 

 
Results 
 
1. Mechanism of Laser-induced Damage 
Photodamage induced by multiphoton microscopy includes both linear and nonlinear processes11,25,26. It 
has been suggested that, with lower laser peak power in CARS imaging, photodamage is dominated by 
linear dependence on peak power11.  Whereas second order processes dominate at higher peak power11. 
The linear dependence of photodamage on peak power has been associated with one-photon absorption in 
human skin and Escherichia coli11,27,28. Linear and higher order processes can both lead to heating, but 
result in different profiles of temperature distribution where nonlinear absorption is mediated by free 
electrons29. Plasma generation through ionization, a result of the multiphoton process, can also have 
chemical effects in addition to thermal. The chemical effects include increase of ROS generation and 
fragmentation of biomolecules, e.g. DNA fragmentation and loss of membrane integrity8,12,13,29. ROS-
mediated phototoxic effects were associated with thermal inactivation of ROS scavengers in cells, in 
addition to the increase in ROS generation8. In the same study, PCR arrays, immunoblotting, and ATF-
knockdown were used to assess the role of ER stress pathway after laser irradiation8. Using a continuous-

Table 1. Summary of laser exposure conditions tested in this study. 

Exposure 

conditions 

Magnification 

(NA) 

avg intensity 

(mW/µm
 2

) 

fluency 

(J/cm
2
) 

Pixel dwelling time 

(µs/pixel) 

I0-E0 20X (0.75) 47.72 9.54 2 

I0-E2 20X (0.75) 47.72 47.72 10 

I0-E4 20X (0.75) 47.72 95.43 20 

I1-E1 20X (0.75) 119.29 23.86 2 

I1-E8 20X (0.75) 119.29 14316 20 * 30 frames 

I2-E2 20X (0.75) 238.58 47.72 2 

I2-E7 20X (0.75) 238.58 477.2 20 

I3-E3 60X (1.2) 397.00 79.40 2 

I4-E5 60X (1.2) 610.7 122 2 
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wave laser to achieve a fluency comparable to our study (around 27 J/cm2), Khan et al. only observed 
phototoxic effects in black wells that absorbed 100% laser irradiation but not in clear wells8. Our study 
used clear glass-bottom well plates to minimize the amount of laser irradiation absorbed by the well plates. 
Damage in DNA and the plasma membrane has been reported to result in apoptosis12. However, some 
studies found increase in ROS generation or apoptosis in cells exposed to laser without direct DNA 
damage8,13. Other observed cellular damages that did not directly lead to apoptosis include non-lethal 
morphological changes, loss of cloning efficiency and uncontrolled cell growth10,14,25. Understanding the 
thresholds for these phototoxic effects is critical for designing a stimulated Raman scattering imaging 
experiment. We aimed to measure the transcriptome-wide response in N2A cells by performing bulk 
RNA-sequencing after exposure to femtosecond pulsed laser irradiation with different exposure settings. 
We also investigated both the immediate and long-time scale response by quantifying intracellular 
generation of ROS immediately after irradiation and by characterizing cell proliferation for 24 hours after 
exposure.  
 
2. Laser induced phototoxicity with typical SRS imaging conditions  
In stimulated Raman scattering (SRS) microscopy, as well as two-photon excitation microscopy (TPEF), 
many critical imaging parameters can influence the degree of photodamage on cells, including laser peak 
intensity, average intensity, repetition rate, excitation wavelength, total energy deposition on the samples, 
and Raman resonance10,11,30. We tested the effects of laser exposure on Neuro2A (N2A) cells, a mouse 
neuroblastoma cell line to investigate how the choice of parameters contributes to photodamage. The 
imaging settings were chosen to represent typical settings of SRS imaging of proteins and were also 
comparable to settings used for TPEF.  

First, we tested the long-term effect of the average excitation intensity on N2A cells in two sets of 
imaging experiments with identical cells, by tuning laser excitation power. The repetition rate and pulse 
width were kept constant at 80 MHz and 120 fs. Thus, the test was equivalent to comparing different laser 
peak intensities. N2A cells were exposed to a single 120-fs laser with an average power at the sample 
plane of 20mW and 100mW, corresponding to average intensities of 47.72 mW/µm2 (exposure condition 
I0-E0) and 238.58 mW/µm2 (exposure condition I2-E2), respectively at 796 nm. After exposure, 
phototoxicity was assessed by measuring the proliferation rates of the N2A cells in each well. 
Additionally, negative control (NC) experiments were performed by seeding cells from the same passage 
in adjacent wells that did not receive laser irradiation. Proliferation of these negative control cells was 
measured in parallel with the two imaging conditions. For all conditions and controls, total cell counts 
were recorded every 2 hours for 30 hours starting about 10 to 20 minutes after exposure. Proliferation was 
calculated as the fold change in total cell count with respect to the initial counts of cells at time zero. The 
proliferation rates of the two exposure conditions, I0-E0 and I2-E2, were identical to the negative control 
group during the 30 hours after laser exposure (Figure 1a), indicating that these intensity levels did not 
have adverse effect on the cloning efficiency of N2A cells. 

In addition to the photo-damage caused by the combined power from two excitation sources, the 
coherent Raman scattering process can also induce photodamage caused by Raman resonance11. We 
tested if excitation with pump and Stoke’s wavelengths chosen to excite Raman resonance in CH3 bonds 
would result in damage that perturbed proliferation rates. To do this, we added a second excitation source 
and chose the intensity of each source to achieve a total combined intensity that was equivalent to the 
previous settings. For each of the two intensities, 47.72 mW/µm2 and 238.58 mW/µm2, N2A cells were 
imaged with SRS by dividing the total intensities between two lasers at 796 nm and 1040 nm with 1:1 
ratio (exposure condition I0-E0-SRS for 47.72 mW/µm2 and I2-E2-SRS for 238.58 mW/µm2). We also 
tested whether any phototoxic effect from the Raman resonance was offset by allocating half the total 
intensity to a longer wavelength. We exposed separate samples of N2A culture to the same two-laser 
settings but eliminated the Raman resonance by delaying the arrival time of the 1040 nm pulse by 50 ps 
with respect to the 796 nm pulse (exposure condition I0-E0-async for 47.72 mW/µm2 and I2-E2-async for 
238.58 mW/µm2). We observed that neither condition diminished cell proliferation over the 30-hour 
period immediately after laser exposure, comparing to the negative control cells that were not exposed to 
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laser irradiation (Figure 1b). 
The lack of change in N2A proliferation rate indicates if there was any perturbation caused by the 

laser exposure under these settings, this perturbation did not negatively impact the long-term survival of 
N2A cells. This, however, does not preclude the possibility of shorter timescale photo-induced 
perturbations that do not affect proliferation rate. Such shorter timescale perturbations might be recorded 
in transcriptional activity which occurs on timescales that are much shorter than the doubling time. To test 
for the potential changes in transcription, we performed bulk RNA sequencing (RNA-seq) on N2A cells 
that were exposed to the single-laser excitation settings tested in the proliferation assays (exposure 
condition I0-E0 and exposure condition I2-E2). For each sample exposed to laser irradiation, RNA was 
extracted 1 hour after exposure. The length of post-exposure incubation was chosen to allow sufficient 
time for transcriptional changes to occur before significant mRNA degradation, according to studies of 
mammalian cell transcription rate31 and mRNA half-life32. We compared gene expression in the exposed 
cells to negative control samples that were not exposed to laser irradiation but were otherwise subjected to 
the same handling. In this differential expression analysis, we did not find any differentially expressed 
genes (DEGs) with a false discovery rate (FDR) < 0.05, after adjusting for multiple hypothesis testing 
with the Benjamini-Hochberg procedure22 or with the Bonferroni correction23 (Figure 2a, 2b), indicating 
that these excitation intensities produced no significant perturbation to gene expression in N2A cells. 

In addition to laser excitation intensity and Raman resonance, the total energy deposition on the 
cells could also influence the extent of phototoxicity. This incident photon dose is determined by the 
excitation intensity and the total exposure time. In the context of laser scanning microscopy, slower 
scanning speeds or repeated imaging can increase photo-induced damage11,30. We tested the impact of 
increasing energy deposition per unit area (fluency) by increasing pixel-dwelling time given a fixed 
intensity. To achieve an increase in fluency of 5x and 10x, the pixel dwelling times were increased from 2 
µs/pixel in the 47.72 mW/µm2 samples (I0-E0) to 10 µs/pixel and 20 µs/pixel (exposure condition I0-E2 
and I0-E4) respectively. We performed RNA-seq with the same procedure as in the previous test on these 
two groups with higher fluency. Comparing to the negative control groups that did not undergo laser 
exposure, no significant differential gene expression was found in these two exposure groups either 
(Figure 2c, 2d).  

 
3. Laser-induced photo-toxicity with high-intensity SRS imaging 
We did not observe any phototoxic effects on proliferation or gene expression with the typical SRS 
imaging parameters. However, in signal-limited SRS imaging applications much higher excitation 
intensities are often implemented, such as the identification of the signature of neuronal membrane 
potentials33. In these scenarios, researchers must balance the large excitation intensities required for high-
sensitivity SRS with photo-damage in the sample resulting from strong photo-absorption including 
plasma generation11 and extreme heating34. This damage can often be observed visually as burning or 
boiling of the sample35. Thus, we probed the impact of laser absorption at settings that are close to 
causing sample destruction by heating. We increased the total average intensity to 397 mW/µm2 by 
switching from a 20X to 60X objective with 1.2 NA. We chose a near-burning condition by repeatedly 
imaging the same field of view until burning was observed in some cells (Figure S1), which occurred 
after 14 successive image scans, the equivalent of 1111.6 J/cm2. In this setup, two lasers at 796 nm and 
1040 nm with a 10:3 power ratio and 2 µs pixel dwelling time were used. In the subsequent experiments, 
we used the same setup but only scanned each field of view once (exposure condition I3-E3-SRS, Table 
1). To test for the long-term survival, we performed a proliferation assay following the same procedure as 
in the previous section. No change was observed in the proliferation rate of N2A cells after exposure to 
this near burning condition using two lasers with pulses that were not temporally coincident compared to 
the negative control group without laser exposure (Figure 3b). Switching to imaging with SRS where the 
two lasers with identical settings were temporally coincident, allowing for Raman resonance at 2950 cm-1, 
also did not change the proliferation rate of N2A cells (Figure 3a). We investigated whether these 
imaging conditions caused shorter time-scale perturbations reflected as transcriptional changes by 
performing RNA-seq 1 hour after imaging the N2A cells with SRS under the near-burning condition (I3-
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E3-SRS), as was described in the previous section. No differentially expressed gene with a FDR < 0.05 
were found in this condition compared the negative control group (Figure 3c). This result suggests that 
N2A cells are robust to high-intensity laser exposure and vibrational excitation. 

We increased the intensity further to probe the limits of non-perturbative femtosecond laser 
scanning excitation. With an average intensity of 610.7 mW/µm2 at 796 nm (exposure condition I4-E5) 
and 2 µs pixel dwelling time, we observed cell burning starting around the second or third sequential 
imaging frame (equivalent to 244 to 366 J/cm2). Under the same laser excitation condition but only one 
imaging frame, the samples exposed to laser irradiation had a proliferation rate that was significantly 
reduced (~25%) compared to the negative control samples that received the same treatment except laser 
exposure (Figure 3d). Laser-induced changes in N2A started to result in proliferation rate changes 
between average intensity of 397 mW/µm2 with a fluency of 79.4 J/cm2 and 610.7 mW/µm2 with a 
fluency of 122 J/cm2. 

 
4. Photo-induced generation of reactive oxygen species in N2A cells  
Generation of various reactive oxygen species (ROS) has been observed under a wide range of laser 
exposure conditions. The generation of ROS has been associated with processes related to sample 
ionization11, heat generation8, and active repair mechanism of cells13. Measurement of the generation of 
ROS is an additional approach for the investigation of photo-induced physiological perturbations in live 
cells, that occur on shorter timescales and that may not have observable influence on gene expression or 
proliferation rate. Although the causality between ROS generation and change in gene expression is 
unclear, such measurements can be used as an orthogonal measurement of photo-induced perturbations in 
live cells. We explored a series of increasing excitation intensities and pixel dwelling times that were used 
in the RNA-seq and proliferation assays as listed in Table 1. The increase in ROS generation was 
measured by the increase in fluorescence of the CellROX Green dye, which became fluorescent after 
oxidation by ROS (Figure 4a). Comparing to the negative control samples without laser exposure (Figure 
4g, 4h), the only condition that resulted in a significant ROS increase was I4-E5 (average intensity = 
610.7 mW/µm2, fluency = 122 J/cm2; Figure 4c, 4d), the near-burning condition we described in the 
previous section that also resulted in decreased proliferation rates. This is also the exposure condition 
with the highest intensity among all experiments. All other exposure settings tested did not result in 
significant generation of ROS measured by the CellROX Green dye. This includes the same exposure 
settings that did not result in changes of proliferation rates or differential gene expression measured by 
RNA-seq in the previous tests (exposure condition I0-E4, I2-E2, I3-E3; Figure 4b, 4e, 4f). This 
observation confirms that these imaging conditions caused insignificant perturbations on the N2A cells. 
Additionally, we tested two conditions that had lower intensity but higher fluency than I4-E5, the 
condition with ROS increase. First, we used the same intensity as I2-E2, 238.58 mW/µm2, using 796 nm 
wavelength and 20X objective. The fluency was increased to 477.2 J/cm2 by increasing the pixel dwelling 
time to 20 µs. This condition with 3.9 times higher fluency than I4-E5 did not result in significant ROS 
generation. We further increased the fluency to 14316 J/cm2 using an average intensity of 119.29 
mW/µm2 at 796 nm. The fluency was achieved by using a 20 µs pixel dwelling time and repeatedly 
imaging the same field of view 30 times. This 117 times increase in fluency from I4-E5 also did not cause 
in increase of ROS generation. Thus, intensity rather than fluency was likely to be the major factor 
determining whether N2A cells had an increase in ROS generation after exposure to a particular laser 
excitation condition. If high imaging intensity is necessary for a particular application, the addition of 
ROS scavengers, such as N-Acetyl-L-cysteine and Catalase, might protect cells from oxidative damage8. 
Lowering cell culture temperature during imaging has also been reported to reduce photodamage caused 
by exposure to continuous-wave lasers8. Additional experiments are needed to examine if the addition of 
oxygen scavengers or lowering temperature would result in changes of gene expression or other 
perturbations. 
 

Conclusion 
This study assessed the effects of laser exposure on mouse Neuro2A cells during SRS imaging or other 
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femtosecond pulsed laser-based imaging modalities that use similar excitation parameters. Multiple types 
of measurements were used – RNA-seq, proliferation assay, and ROS assay – to probe N2A cells at a 
range of time points after laser exposure. We demonstrated that N2A cells can have strong tolerance to 
laser exposure over a wide range of imaging power and intensity. This tolerance of N2A cells makes it 
possible to perform time-lapse imaging, RNA-seq, and other measurements after the first exposure to 
laser excitation without inducing biological perturbations in the downstream measurements. This allows 
for accurate interpretation of paired imaging and RNA-seq measurements, which could gain additional 
insights compared to the individual measurements alone. However, any RNA-seq measurements could 
only capture the state of gene expression at the time of the measurement. Although we chose the 1-hour 
incubation time before RNA-seq to allow for sufficient time for potential transcriptomic changes to occur, 
gene expression changes might happen at a longer time scale, that was not captured in this study. The lack 
of change in the 1-hour period after laser irradiation could potentially be indicative of the absence of other 
forms of cellular changes. However, it’s possible that the response of N2A to laser exposure was reflected 
in changes unrelated to gene expression differences. This study focused on one particular cell type, N2A, 
and the response might differ from other cell types in their sensitivity and tolerance to laser exposure. The 
ROS assays also demonstrated that cells can have different tolerance to increase in laser excitation 
intensity and fluency, which could be a factor to consider when higher resolution is required. Except for 
I1-E8, where we repeatedly imaged N2A cells in the same field of view 30 times before the ROS assay, 
we did not explore the possibility of photo-induced perturbations caused by repeated exposure in other 
contexts. Changes in N2A cells might be observed with extended exposure beyond 20 µs/pixel and 1 
imaging frame prior to RNA-seq or proliferation assay. The tunable parameters in SRS imaging form a 
multidimensional space that allow the imaging settings to vary widely among different applications. The 
subset of parameters we chose to assess aimed to cover representative changes in intensity, pixel dwelling 
time, wavelength, and vibrational resonance. Other studies of photodamage in the context of CARS and 
TPEF observed perturbations to cells using pico-second lasers and/or higher pixel dwelling time (e.g. 60 
µs/pixel comparing to 2-20 µs/pixel in our study) 10–12. These studies usually examined lower average 
intensity but higher fluency than our imaging condition with the highest average laser intensity in this 
study (610.7 mW/µm2). Additionally, depending on the timing of downstream measurements, the impacts 
of laser excitation could manifest in different aspects of cellular processes. Our multimodal measurements 
at representative timescales after laser exposure could provide insights for assessing potential impacts of 
laser exposure in future SRS imaging experiments.  
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Figure 1. Proliferation rates after laser exposure. Measured as fold changes of the counts of N2A cells every 2 
hours with respect to the initial counts of cells immediately after the completion of all laser exposures. I0: average 
intensity = 47.72 mW/µm2; I2: average intensity = 238.58 mW/µm2. E0: fluency = 9.54 J/cm2; E2: fluency = 47.72 
J/cm2; NC = negative control; SRS: cells were imaged with SRS; async: cells were imaged with an interpulse delay 
of 50 ps. a) A single pulsed laser at 796 nm was used. b) Two lasers at 796 nm and 1040 nm were used, which had 
1:1 power ratio. The total average intensities of the two laser settings were the same as the respective single laser 
settings.  
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Figure 2. RNA-seq volcano plots of differential gene expression from single-laser exposure conditions 
compared to the negative control samples. a) I0-E0: average intensity = 47.72 mW/µm2; fluency = 9.54 mW/µm2. 
b) I2-E2: average intensity = 238.58 mW/µm2, fluency = 47.72 J/cm2. c) I0-E2: average intensity = 47.72 mW/µm2; 
fluency = 47.72 J/cm2. d) I0-E4: average intensity = 47.72 mW/µm2, fluency = 95.43 J/cm2.  
logFC: log2 fold change with respect to negative control samples (NC) that were not exposed to laser. Vertical lines 
are at -0.6 and 0.6. -log10(p-value): -log10 of p-values of differential expression with respect to NC. Horizontal 
lines indicate familywise error rate of 0.05 after Bonferroni correction23. 
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Figure 3. Proliferation and RNA-seq of near-burning conditions. (a) Proliferation rates of I3-E3-SRS measured 
as fold changes of the counts of N2A cells at every 30 minutes with respect to the initial counts of cells immediately 
after the completion of all laser exposures for 25.5 hours; (b) proliferation rates of I3-E3-async which has the same 
laser settings as in (a) but has laser pulses that arrive at the sample at different times (50 ps interpulse delay); (c) 
Volcano plot of RNA-seq results of cells exposed to I3-E3-SRS with 1 hour post-exposure incubation; (d) 
proliferation rates of I4-E5 measured at every 30 minutes for 24.5 hours after laser exposure. I3: average intensity = 
397 mW/µm2; I4: average intensity = 610.7 mW/µm2; E3: fluency = 79.4 J/cm2; E5: fluency =122 J/cm2; NC = 
negative control. SRS: cells were imaged with SRS; async: cells were imaged with an interpulse delay of 50 ps. 
logFC: log2 fold change with respect to negative control samples that were not exposed to laser. Vertical lines are at 
-0.6 and 0.6. -log10(p-value): -log10 of p-values of differential expression with respect to NC. Horizontal lines 
indicate familywise error rate of 0.05 after Bonferroni correction23. 
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Figure 4. ROS measurements across laser intensities and fluencies. 
(a) Skeletal formula schematic of oxidation of CellROX Green dye by ROS36 
(b) Distribution of mean intensities of all cells in samples with laser exposure and the negative control group after 
flatfield correction. p-value of I0-E4 vs NC is 0.0871. p-value of I1-E8 vs NC is 1.47e-5. p-value of I2-E2 vs NC is 
2.89e-10. p-value of I2-E7 vs NC is 0.33. p-value of I3-E3 vs NC is 9.11e-4. p-value of I4-E5 vs NC is 5.73e-45.  
(c) GFP channel after exposure to I4-E5 and 30 min post-exposure incubation 
(d) Bright-field image of the same field of view as (c) 
(e) GFP channel after exposure to I3-E3 and 30 min post-exposure incubation 
(f) Bright-field image of the same field of view as (e) 
(g) GFP channel after 30 min incubation of unexposed cells  
(h) Bright-field image of the same field of view as (g) 
I0: average intensity = 47.72 mW/µm2; I1: average intensity = 119.29 mW/µm2; I2: average intensity = 238.58 
mW/µm2; I3: average intensity = 397 mW/µm2; I4: average intensity = 610.7 mW/µm2; E2: fluency = 47.72 J/cm2; 
E3: fluency = 79.4 J/cm2; E4: fluency = 95.43 J/cm2; E5: fluency = 122 J/cm2; E7: fluency = 477.2 J/cm2; E8: 
fluency = 14316 J/cm2; NC = negative control. 
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Supplemental Figures 

Figure S1. 2nd, 14th, and 51st frames of N2A cells exposed to near-burning condition (I3-E3). I3: average 
intensity = 397 mW/µm2; E3: fluency = 79.4 J/cm2. 
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